Author:
Marin Rodrigo M.,Franchini Kleber G.
Abstract
In isolated rat hearts perfused with HEPES and red blood cell-enriched buffers, we examined changes in left ventricular pressure induced by increases in heart rate or infusion of adenosine to investigate whether the negative force-frequency relation and the positive inotropic effect of adenosine are related to an inadequate oxygen supply provided by crystalloid perfusates. Hearts perfused with HEPES buffer at a constant flow demonstrated a negative force-frequency relation, whereas hearts perfused with red blood cell-enriched buffer exhibited a positive force-frequency relation. In contrast, HEPES buffer-perfused hearts showed a concentration-dependent increase in left ventricular systolic pressure [EC50 = 7.0 ± 1.2 nM, maximal effect (Emax) = 104 ± 2 and 84 ± 2 mmHg at 0.1 μM and baseline, respectively] in response to adenosine, whereas hearts perfused with red blood cell-enriched buffer showed no change in left ventricular pressure. The positive inotropic effect of adenosine correlated with the simultaneous reduction in heart rate ( r = 0.67, P < 0.01; EC50 = 3.8 ± 1.4 nM, baseline 228 ± 21 beats/min to a minimum of 183 ± 22 beats/min at 0.1 μM) and was abolished in isolated hearts paced to suppress the adenosine-induced bradycardia. In conclusion, these results indicate that the negative force-frequency relation and the positive inotropic effect of adenosine in the isolated rat heart are related to myocardial hypoxia, rather than functional peculiarities of the rat heart.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献