Right atrial pressure and venous return during cardiopulmonary bypass

Author:

Moller Per W.12,Winkler Bernhard3,Hurni Samuel3,Heinisch Paul Philipp3,Bloch Andreas1,Sondergaard Soren4,Jakob Stephan M.1,Takala Jukka1,Berger David1

Affiliation:

1. Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland;

2. Department of Anaesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden;

3. Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; and

4. Centre of Elective Surgery, Silkeborg Regional Hospital, Denmark

Abstract

The relevance of right atrial pressure (RAP) as the backpressure for venous return (QVR) and mean systemic filling pressure as upstream pressure is controversial during dynamic changes of circulation. To examine the immediate response of QVR (sum of caval vein flows) to changes in RAP and pump function, we used a closed-chest, central cannulation, heart bypass porcine preparation ( n = 10) with venoarterial extracorporeal membrane oxygenation. Mean systemic filling pressure was determined by clamping extracorporeal membrane oxygenation tubing with open or closed arteriovenous shunt at euvolemia, volume expansion (9.75 ml/kg hydroxyethyl starch), and hypovolemia (bleeding 19.5 ml/kg after volume expansion). The responses of RAP and QVR were studied using variable pump speed at constant airway pressure (PAW) and constant pump speed at variable PAW. Within each volume state, the immediate changes in QVR and RAP could be described with a single linear regression, regardless of whether RAP was altered by pump speed or PAW ( r2 = 0.586–0.984). RAP was inversely proportional to pump speed from zero to maximum flow ( r2 = 0.859–0.999). Changing PAW caused immediate, transient, directionally opposite changes in RAP and QVR (RAP: P ≤ 0.002 and QVR: P ≤ 0.001), where the initial response was proportional to the change in QVR driving pressure. Changes in PAW generated volume shifts into and out of the right atrium, but their effect on upstream pressure was negligible. Our findings support the concept that RAP acts as backpressure to QVR and that Guyton’s model of circulatory equilibrium qualitatively predicts the dynamic response from changing RAP. NEW & NOTEWORTHY Venous return responds immediately to changes in right atrial pressure. Concomitant volume shifts within the systemic circulation due to an imbalance between cardiac output and venous return have negligible effects on mean systemic filling pressure. Guyton’s model of circulatory equilibrium can qualitatively predict the resulting changes in dynamic conditions with right atrial pressure as backpressure to venous return.

Funder

Stiftung für Forschung in Anaesthesiologie und Intensivmedizin, Bern, Switzerland

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3