Voltage-dependent K+ channels regulate the duration of reactive hyperemia in the canine coronary circulation

Author:

Dick Gregory M.,Bratz Ian N.,Borbouse Léna,Payne Gregory A.,Dincer Ü. Deniz,Knudson Jarrod D.,Rogers Paul A.,Tune Johnathan D.

Abstract

We previously demonstrated a role for voltage-dependent K+ (KV) channels in coronary vasodilation elicited by myocardial metabolism and exogenous H2O2, as responses were attenuated by the KV channel blocker 4-aminopyridine (4-AP). Here we tested the hypothesis that KV channels participate in coronary reactive hyperemia and examined the role of KV channels in responses to nitric oxide (NO) and adenosine, two putative mediators. Reactive hyperemia (30-s occlusion) was measured in open-chest dogs before and during 4-AP treatment [intracoronary (ic), plasma concentration 0.3 mM]. 4-AP reduced baseline flow 34 ± 5% and inhibited hyperemic volume 32 ± 5%. Administration of 8-phenyltheophylline (8-PT; 0.3 mM ic or 5 mg/kg iv) or NG-nitro-l-arginine methyl ester (l-NAME; 1 mg/min ic) inhibited early and late portions of hyperemic flow, supporting roles for adenosine and NO. 4-AP further inhibited hyperemia in the presence of 8-PT or l-NAME. Adenosine-induced blood flow responses were attenuated by 4-AP (52 ± 6% block at 9 μg/min). Dilation of arterioles to adenosine was attenuated by 0.3 mM 4-AP and 1 μM correolide, a selective KV1 antagonist (76 ± 7% and 47 ± 2% block, respectively, at 1 μM). Dilation in response to sodium nitroprusside, an NO donor, was attenuated by 4-AP in vivo (41 ± 6% block at 10 μg/min) and by correolide in vitro (29 ± 4% block at 1 μM). KV current in smooth muscle cells was inhibited by 4-AP (IC50 1.1 ± 0.1 mM) and virtually eliminated by correolide. Expression of mRNA for KV1 family members was detected in coronary arteries. Our data indicate that KV channels play an important role in regulating resting coronary blood flow, determining duration of reactive hyperemia, and mediating adenosine- and NO-induced vasodilation.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3