Ginsenosides block HIV protease inhibitor ritonavir-induced vascular dysfunction of porcine coronary arteries

Author:

Chai Hong,Zhou Wei,Lin Peter,Lumsden Alan,Yao Qizhi,Chen Changyi

Abstract

Human immunodeficiency virus (HIV) protease inhibitor ritonavir (RTV) may induce vascular dysfunction through oxidative stress. Ginsenosides have been shown to have potential benefits on the cardiovascular system through diverse mechanisms, including antioxidative property. The objective of this study was to determine whether ginsenosides could prevent coronary arteries from RTV-induced dysfunction. Porcine coronary artery rings were incubated with RTV and ginsenosides Rb1, Rc, and Re for 24 h. Vasomotor function was recorded by a myograph tension system. In response to the thromboxane A2 analog U-46619, the contraction of the vessel rings was significantly reduced. When cocultured with Rb1, Rc, and Re, the contractility significantly increased. In response to bradykinin at 10−5 M, the endothelium-dependent relaxation of vessel rings was significantly reduced by 59% for RTV compared with controls ( P < 0.05). When cocultured with Rb1, Rc, and Re, the relaxation significantly increased 100%, 90%, and 134%, respectively, compared with the RTV-alone groups ( P > 0.05). In response to sodium nitroprusside, RTV significantly reduced vasorelaxation. In addition, the endothelial nitric oxide synthase (eNOS) mRNA levels were significantly reduced by 78% for RTV group ( P < 0.05) by real-time PCR analysis. The eNOS protein levels measured by Western blot analysis and nitrite concentrations measured by Griess assay were also decreased, whereas O2 production by lucigenin-enhanced chemiluminescence was significantly increased in the RTV-treated group. These effects of RTV were effectively blocked by ginsenosides. Thus HIV protease inhibitor RTV significantly impaired the vasomotor function of porcine coronary arteries. This effect may be mediated by the downregulation of eNOS and overproduction of O2. These results suggest that ginsenosides can effectively block RTV-induced vascular dysfunction.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3