Affiliation:
1. Department of Physiology and Biophysics, University of Texas MedicalBranch, Galveston 77550.
Abstract
The cellular mechanisms enabling baroreceptors to transduce wall distortion into axonal discharge are unknown but might involve stretch-activated ion channels. Gadolinium (Gd3+, 10 microM) blocks stretch-activated channels in several preparations. Here we tested Gd3+ effects on discharge responses of 15 single-fiber baroreceptors in vitro. We simultaneously measured discharge, pressure, and aortic diameter at Gd3+ concentrations from 0.001 to 400 microM. High levels of Gd3+ added to a bicarbonate-buffered perfusate (Krebs) slightly shifted the pressure-discharge relation (less than 4 mmHg, n = 3, P = 0.01) without affecting slope or discharge frequency at threshold. Gd3+ in Krebs variably altered the pressure-diameter relation. Because 500 microM Gd3+ produced visible precipitate in Krebs, we tested Gd3+ in a simpler perfusate using N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES). Gd3+ in HEPES (n = 10) induced minor, but statistically significant, average increases in threshold (less than +5-7%) and no changes in gain. However, prolonged HEPES exposure alone (n = 2) produced similar shifts. Electron microscopy verified that Gd3+ diffused from the lumen to reach extracellular locations near baroreceptor endings. We conclude that 1) HEPES perfusate alone reversibly depresses baroreceptor discharge and 2) Gd3+ has no direct effects on baroreceptors. Thus it appears that aortic baroreceptor mechanotransduction must utilize a different class of stretch-activated ion channels.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献