Gadolinium and mechanotransduction of rat aortic baroreceptors

Author:

Andresen M. C.1,Yang M.1

Affiliation:

1. Department of Physiology and Biophysics, University of Texas MedicalBranch, Galveston 77550.

Abstract

The cellular mechanisms enabling baroreceptors to transduce wall distortion into axonal discharge are unknown but might involve stretch-activated ion channels. Gadolinium (Gd3+, 10 microM) blocks stretch-activated channels in several preparations. Here we tested Gd3+ effects on discharge responses of 15 single-fiber baroreceptors in vitro. We simultaneously measured discharge, pressure, and aortic diameter at Gd3+ concentrations from 0.001 to 400 microM. High levels of Gd3+ added to a bicarbonate-buffered perfusate (Krebs) slightly shifted the pressure-discharge relation (less than 4 mmHg, n = 3, P = 0.01) without affecting slope or discharge frequency at threshold. Gd3+ in Krebs variably altered the pressure-diameter relation. Because 500 microM Gd3+ produced visible precipitate in Krebs, we tested Gd3+ in a simpler perfusate using N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES). Gd3+ in HEPES (n = 10) induced minor, but statistically significant, average increases in threshold (less than +5-7%) and no changes in gain. However, prolonged HEPES exposure alone (n = 2) produced similar shifts. Electron microscopy verified that Gd3+ diffused from the lumen to reach extracellular locations near baroreceptor endings. We conclude that 1) HEPES perfusate alone reversibly depresses baroreceptor discharge and 2) Gd3+ has no direct effects on baroreceptors. Thus it appears that aortic baroreceptor mechanotransduction must utilize a different class of stretch-activated ion channels.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3