Cyclic nucleotide phosphodiesterases from frog atrial fibers: isolation and drug sensitivities

Author:

Lugnier C.1,Gauthier C.1,Le Bec A.1,Soustre H.1

Affiliation:

1. Laboratoire de Pharmacologie Cellulaire et Moleculaire, Centre National de la Recherche Scientifique Unite 600, Universite Louis Pasteur de Strasbourg, Illkirch, France.

Abstract

The cyclic nucleotide phosphodiesterase (PDE) forms present in frog atrial fibers were isolated and characterized by their drug sensitivities. DEAE-sephacel chromatography of cytosolic PDE activity resolved three major PDE forms: peak A hydrolyzed both adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) and was activated by calcium-calmodulin (PDE I); peak B also hydrolyzed both cAMP and cGMP but was activated by 5 microM cGMP (PDE II); peak C specifically hydrolyzed cAMP (PDE IV). Rolipram specifically inhibited PDE IV (Ki = 1.1 microM), whereas dipyridamole potently inhibited both PDE II (Ki = 4.6 microM) and PDE IV (Ki = 0.8 microM). Atrial fiber PDE I was preferentially inhibited by zaprinast (Ki = 10 microM). 3-Isobutyl-1-methyl xanthine (IBMX) and theophylline inhibited nonspecifically all three different enzymes. The positive inotropic drug CI 930 only inhibited the different isolated atrial PDE forms at concentrations greater than 200 microM. However, under assay conditions for which PDE IV was specifically inhibited (presence of 100 microM rolipram), an IC50 of 17 microM for CI 930 was observed on the remaining 26% cAMP hydrolytic activity of peak C (which could represent a cGMP-inhibited PDE form: PDE III). The same PDE forms were also found in frog ventricle. The major difference between frog atrial fiber (and ventricular tissue) PDEs and mammalian cardiac PDEs is that the main cytosolic cAMP-specific hydrolytic activity in frog heart is due to PDE IV rather than PDE III. Rolipram, dipyridamole, and zaprinast might be useful tools to investigate the participation of cAMP in frog atrial contraction (unpublished observations).

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3