Inhibition of bovine retinal microvascular pericyte proliferation in vitro by adenosine

Author:

Jackson J. A.1,Carlson E. C.1

Affiliation:

1. Department of Anatomy and Cell Biology, University of North Dakota School of Medicine, Grand Forks 58202.

Abstract

Adenosine acts on bovine retinal microvascular pericytes through one or more adenosine receptor subtypes present on the cell surface. Retinal pericytes cultured in medium containing adenosine at concentrations from 10(-6) to 10(-4) M showed significant reduction in proliferation following several days in vitro compared with control cultures. The effects of adenosine were mimicked by polyadenylic acid and inhibited by 8-phenyltheophylline, indicating involvement of a cell surface receptor. Metabolites of adenosine had no effect on pericyte proliferation. An A2 adenosine receptor-specific analogue also inhibited pericyte growth, suggesting that inhibition by adenosine is mediated by A2-receptors and might involve a transient increase in adenosine 3',5'-cyclic monophosphate levels. The results of the present study demonstrate that in addition to demonstrated stimulatory effects on capillary endothelial cells, adenosine also has a direct inhibitory effect on retinal pericytes. We hypothesize a dual function of adenosine within the capillary wall resulting in loss of inhibition of endothelial cells and suggest a role for this nucleoside in pathological neovascularization processes such as proliferative diabetic retinopathy.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Perivascular CD73+cells attenuate inflammation and interstitial fibrosis in the kidney microenvironment;American Journal of Physiology-Renal Physiology;2019-09-01

2. Pericytes constrict blood vessels after myocardial ischemia;Journal of Molecular and Cellular Cardiology;2018-03

3. Purinergic Signaling and Blood Vessels in Health and Disease;Pharmacological Reviews;2013-12-11

4. Diadenosines as FHIT-ness instructors;Journal of Cellular Physiology;2006

5. Signalling from adenosine receptors to mitogen-activated protein kinases;Cellular Signalling;2003-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3