Affiliation:
1. Department of Chemistry, University of Texas at Dallas, Richardson 75080.
Abstract
Isolated beating rat hearts were perfused with trifluoroacetamide (TFM) and trifluoroacetate (TFA) and monitored by 19F-nuclear magnetic resonance (NMR). The average membrane TFA potential in spontaneously beating rat hearts, calculated according to standard principles assuming that TFA is distributed in its anionic form, was found to be -36.2 +/- 3.2 mV (n = 9) under normoxic conditions. In separate experiments, the chloride and potassium potentials were determined to be -38.5 +/- 3.6 mV (n = 7) and -85.3 +/- 3.3 mV (n = 7), respectively, from freeze-clamped heart tissue. In the presence of the anion-exchange inhibitor, 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), TFA uptake into heart was significantly reduced, suggesting that TFA uptake occurs partly via the Cl(-)-HCO3- exchanger. Based on these results and the results of R. E. London and S. A. Gabel (Biochemistry 28: 2378–2382, 1989), we conclude that the distribution of TFA in hearts reflects the chloride potential (ECl) and not the membrane potential. A time-dependent change in the ECl occurs during global ischemia, and changes in ECl were also observed when the hearts were perfused with high concentrations of KCl. These results demonstrate that 19F-NMR may be utilized to monitor the ECl of perfused hearts under a variety of conditions.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献