Anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells

Author:

Yoshida N.1,Granger D. N.1,Anderson D. C.1,Rothlein R.1,Lane C.1,Kvietys P. R.1

Affiliation:

1. Department of Physiology, Louisiana State University Medical Center, Shreveport 71130.

Abstract

Previous studies have shown enhanced neutrophil adhesion to endothelial cells exposed to anoxia and then reoxygenated (A/R). To define the molecular basis for these observations, we evaluated the relative roles of CD11/CD18 determinants (CD11a and CD11b) of neurtrophils and the endothelial adhesion proteins intercellular adhesion molecule 1 (ICAM-1) and endothelial-leukocyte adhesion molecule 1 (ELAM-1). Human umbilical vein endothelial cell (HUVEC) monolayers were exposed to anoxia for 30 min, reoxygenated, and then reacted with 51Cr-labeled neutrophils in adhesion assays. Neutrophil adhesion to HUVEC exposed to A/R was significantly increased (2.7-fold) as compared with that observed with normoxic (control) HUVEC. This A/R-induced hyperadherence was significantly diminished by monoclonal antibodies (MAb) directed at CD11a, CD11b, CD18 or ICAM-1, but not by MAb directed at ELAM-1. The inhibitory effects of anti-CD11a and anti-CD11b were additive and equivalent to that of anti-CD18 MAb. A/R did not elicit increased levels of ICAM-1 or ELAM-1 mRNA or surface protein. However, immunofluorescence flow cytometry indicated that incubation of neutrophils in supernatants of A/R-conditioned HUVEC elicited an increase of surface CD11b and CD18, but not CD11a. Supernatants from A/R-conditioned HUVEC promoted neutrophil adherence to naive HUVEC, and this hyperadhesivity was diminished by a platelet-activating factor (PAF) receptor antagonist and catalase but not by a 5-lipoxygenase inhibitor, a leukotriene B4 receptor antagonist, or superoxide dismutase. These studies indicate that A/R promotes neutrophil adherence via CD11a/CD18- and CD11b/CD18-dependent interactions with ICAM-1 that appear to be mediated by hydrogen peroxide and PAF.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3