Vulnerability of rabbit atrium to reentry by hypoxia. Role of inhomogeneity in conduction and wavelength

Author:

Lammers W. J.1,Kirchhof C.1,Bonke F. I.1,Allessie M. A.1

Affiliation:

1. Department of Physiology, University of Limburg, Maastricht, The Netherlands.

Abstract

In isolated superfused left atria of the rabbit, the inducibility of tachyarrhythmias by single early premature stimuli was highly increased by hypoxia. High-resolution mapping showed that these arrhythmias were caused by circus movement around a functional arc of conduction block (leading circle reentry). To determine the electrophysiological changes by hypoxia responsible for the higher vulnerability to intra-atrial reentry, the wavelength of the atrial impulse and spatial inhomogeneities in refractory periods and local conduction delays were measured. Hypoxia caused a transient increase in refractory periods during the first 10-15 min of hypoxia. After this period, refractory periods shortened again to values slightly lower than during control. During the whole period of hypoxia, local differences in refractory periods were enlarged. Conduction velocity was significantly depressed by hypoxia. As a result, the wavelength of the atrial impulse gradually shortened during hypoxia to approximately 80% of control. Inhomogeneity in conduction was quantified by phase maps in which the maximal local delays in conduction are plotted. Hypoxia caused a marked increase in inhomogeneity in conduction both during slow rhythm (inhomogeneity index increased from 2.3 to 3.4) and premature activation (from 3.1 to 4.7). We conclude that the higher vulnerability of the atrium for reentrant arrhythmias by hypoxia is based on a combination of a moderate shortening of the wavelength and an increase in inhomogeneity in conduction of premature wavefronts.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3