β-Adrenergic modulation of arrhythmogenesis and identification of targeted sites of antiarrhythmic therapy in Timothy (LQT8) syndrome: a theoretical study

Author:

Sung Ruey J.12,Wu Yung-Han3,Lai Nathan Hsing-Jung3,Teng Chun-Hao4,Luo Ching-Hsing5,Tien Hui-Chun6,Lo Chu-Pin6,Wu Sheng-Nan3

Affiliation:

1. Institute of Life Sciences, College of Sciences, National Central University, Taoyuan;

2. Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California

3. Institute of Basic Medical Research, College of Medicine,

4. Department of Mathematics, College of Sciences, and

5. Institute of Electrical Engineering, College of Engineering and Computer Science, National Cheng Kung University, Tainan; and

6. Department of Applied Mathematics, Providence University, Taichung, Taiwan; and

Abstract

Timothy syndrome (TS) is a malignant form of congenital long QT syndrome with a mode of arrhythmia onset often triggered by enhanced sympathetic tone. We sought to explore mechanisms by which β-adrenergic stimulation (BAS) modulates arrhythmogenesis and to identify potential targeted sites of antiarrhythmic therapy in TS. Using a dynamic Luo-Rudy ventricular myocyte model incorporated with detailed intracellular Ca2+ cycling, along with its one-dimensional multicellular strand, we simulated various clinical scenarios of TS, with stepwise increase in the percentage of G406R Cav1.2 channels from 0 to 11.5 and 23%, and to 38.5 and 77%, respectively, for heterozygous and homozygous states of TS1 and TS2. Progressive prolongation of action potential duration (APD) and QT interval, accompanied by amplification of transmural dispersion of repolarization, steepening of APD restitution, induction of delayed afterdepolariztions (DADs), and both DAD and phase 3 early afterdepolariztion-mediated triggered activities, correlated well with the extent of G406R Cav1.2 channel mutation. BAS amplified transmural dispersion of repolarization, steepened APD restitution, and facilitated inducibility of DAD-mediated triggered activity. Systematic analysis of intracellular Ca2+ cycling revealed that sarcoplasmic reticulum Ca2+ ATPase (uptake current) played an essential role in BAS-induced facilitation of DAD-mediated triggered activity and, in addition to L-type calcium current, it could be an effective site of antiarrhythmic therapy under the influence of BAS. Thus G406R Cav1.2 channel mutation confers not only a trigger, but also a substrate for lethal ventricular arrhythmias, which can be exaggerated by BAS. It is suggested that, besides β-adrenergic blockers and L-type calcium current channel blockers, an agent aimed at reduction of sarcoplasmic reticulum Ca2+ ATPase uptake current may provide additional antiarrhythmic effect in patients with TS.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3