Na+ current through KATP channels: consequences for Na+ and K+ fluxes during early myocardial ischemia

Author:

Bollensdorff Christian1,Knopp Andreas1,Biskup Christoph1,Zimmer Thomas1,Benndorf Klaus1

Affiliation:

1. Institut für Physiologie, Abt. Herz-Kreislauf-Physiologie, Friedrich-Schiller-Universität Jena, D-07740 Jena, Germany

Abstract

During early myocardial ischemia, the myocytes are loaded with Na+, which in turn leads to Ca2+ overload and cell death. The pathway of the Na+ influx has not been fully elucidated. The aim of the study was to quantify the Na+ inward current through sarcolemmal KATP channels ( IKATP,Na) in anoxic isolated cardiomyocytes at the actual reversal potential ( Vrev) and to estimate the contribution of this current to the Na+ influx in the ischemic myocardium. IKATP,Na was determined in excised single channel patches of mouse ventricular myocytes and macropatches of Xenopus laevis oocytes expressing SUR2A/Kir6.2 channels. In the presence of K+ ions, the respective permeability ratios for Na+ to K+ ions, PNa/ PK, were close to 0.01. Only in the presence of Na+ ions on both sides of the membrane was IKATP,Na similarly large to that calculated from the permeability ratio PNa/ PK, indicative of a Na+ influx that is largely independent of the K+ efflux at Vrev. With the use of a peak KATP channel conductance in anoxic cardiomyocytes of 410 nS, model simulations for a myocyte within the ischemic myocardium showed that the amplitude of the Na+ influx and K+ efflux is even larger than the respective fluxes by the Na+-K+ pump and all other background fluxes. These results suggest that during early ischemia the Na+ influx through KATP channels essentially contributes to the total Na+ influx and that it also balances the K+ efflux through KATP channels.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3