Effects of aging on capillary geometry and hemodynamics in rat spinotrapezius muscle

Author:

Russell John A.1,Kindig Casey A.1,Behnke Brad J.1,Poole David C.1,Musch Timothy I.1

Affiliation:

1. Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas 66506-5802

Abstract

The effects of aging on muscle microvascular structure and function may play a key role in performance deficits and impairment of O2 exchange within skeletal muscle of senescent individuals. To determine the effects of aging on capillary geometry, red blood cell (RBC) hemodynamics, and hematocrit in a muscle of mixed fiber type, spinotrapezius muscles from Fischer 344 × Brown Norway hybrid rats aged 6–8 mo [young (Y); body mass 421 ± 10 g, n = 6] and 26–28 mo [old (O); 561 ± 12 g, n = 6] were observed by high-resolution transmission light microscopy under resting conditions. The percentage of RBC-perfused capillaries (Y: 78 ± 3%; O: 75 ± 2%) and degree of tortuosity and branching (Y: 13 ± 2%; O: 13 ± 2%, additional capillary length) were not different in O vs. Y muscles. Lineal density of RBC-perfused capillaries in O was significantly reduced (Y: 30.7 ± 1.8, O: 22.8 ± 3.1 capillaries/mm; P < 0.05). However, RBC-perfused capillaries from O rats ( n = 78) exhibited increased RBC velocity ( VRBC) (Y: 219 ± 12, O: 310 ± 14 μm/s; P < 0.05) and RBC flux ( FRBC) (Y: 27 ± 2, O: 41 ± 2 RBC/s; P < 0.05) vs. Y rats ( n = 66). Thus O2 delivery per unit of muscle was not different between groups (Y: 894 ± 111, O: 887 ± 118 RBC · s-1 · mm muscle-1). Capillary hematocrit was not different in Y vs. O rats (Y: 26 ± 1%, O: 28 ± 1%: P > 0.05). These data indicate that in resting spinotrapezius muscle, aging decreases the lineal density of RBC-perfused capillaries while increasing mean VRBC and FRBC within those capillaries. Whereas muscle conductive O2 delivery and capillary hematocrit were unchanged, elevated VRBC reduces capillary RBC transit time and may impair the diffusive transport of O2 from blood to myocyte particularly under exercise conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Reference59 articles.

1. Altman PL and Dittmer DS. Biology Data Book (2nd ed.). Bethesda, MD: FASEB, 1974, p. 1598-1613.

2. Bailey JK, Kindig CK, Behnke BJ, Musch TI, Schmid-Schoenbein GW, and Poole DC. Spinotrapezius muscle microcirculatory function: effects of surgical exteriorization. Am J Physiol Heart Circ Physiol 279: H1331-H1337, 2000.

3. Age-related changes in dermal absorption of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,4,7,8-pentachlorodibenzofuran*1

4. Capillary length, tortuosity, and spacing in rat myocardium during cardiac cycle

5. Behnke BJ, Barstow TJ, Kindig CA, McDonough P, Musch TI, and Poole DC. Dynamics of oxygen uptake following exercise onset in rat skeletal muscle. Respir Physiol 133: 229-239, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3