Endothelin isoforms and the response to myocardial stretch

Author:

Ennis Irene L.,Garciarena Carolina D.,Pérez Néstor G.,Dulce Raúl A.,Camilión de Hurtado María C.,Cingolani Horacio E.

Abstract

Myocardial stretch elicits a biphasic increase in developed force with a first rapid force response and a second slow force response (SFR). The rapid phase is due to an increase in myofilament Ca2+ responsiveness; the SFR, analyzed here, is ascribed to a progressive increase in Ca2+ transients. Experiments were performed in cat papillary muscles to further elucidate the signaling pathway underlying the SFR. Although the SFR was diminished by BQ-123, a similar endothelin (ET)-1-induced increase in force was not affected: 23 ± 2 vs. 23 ± 3% (not significant). Instead, BQ-123 suppressed the contractile effects of ET-2 or ET-3 (21 ± 2 and 25 ± 3% vs. −1 ± 1 and −7 ± 3% respectively, P < 0.05), suggesting that ET-2 or ET-3, but not ET-1, was involved in the SFR. Each isoform activated the Na+/H+ exchanger (NHE-1), increasing intracellular Na+ concentration by 2.0 ± 0.1, 2.3 ± 0.1, and 2.1 ± 0.4 mmol/l for ET-1, ET-2, and ET-3, respectively ( P < 0.05). The NHE-1 inhibitor HOE-642 prevented the increases in force and intracellular Na+ concentration induced by all the ET isoforms, but only ET-2 and ET-3 effects were sensitive to BQ-123. Real-time RT-PCR measurements of prepro-ET-1, -ET-2, and -ET-3 were performed before and 5, 15, and 30 min after stretch. No changes in ET-1 or ET-2, but an increase of ∼60% in ET-3, mRNA after 15 min of stretch were detected. Stretch-induced ET-3 mRNA upregulation and its mechanical counterpart were suppressed by AT1 receptor blockade with losartan. These data suggest a role for AT1-mediated ET-3 released in the early activation of NHE-1 that follows myocardial stretch.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3