Author:
Turcott Robert G.,Pavek Todd J.
Abstract
Pacemakers and implantable defibrillators presently operate without access to hemodynamic information. If available, such data would allow tailoring of delivered therapy according to perfusion status, optimization of device function, and enhancement of disease monitoring and management. A candidate method for hemodynamic sensing in these devices is photoplethysmography (PPG), which uses light to noninvasively detect changes in blood volume. The present study tested the hypotheses that PPG can function in a subcutaneous location, that the acute changes in blood volume it detects are directly proportional to changes in arterial pressure, and that optimum pacing intervals identified by it are concordant with those determined by arterial pressure. Aortic pressure and PPG were simultaneously recorded in 10 dogs under general anesthesia during changes in atrioventricular (AV) delay and bursts of rapid pacing to simulate tachyarrhythmias. Direct proportionality between transient changes in pressure and PPG waveforms was tested using regression analysis. Scatter plots had a linear appearance, with correlation coefficients of 0.95 (SD 0.03) and 0.72 (SD 0.24) for rapid-pacing and AV delay protocols, respectively. The data were well described by a directly proportional relationship. Optimum AV delays estimated from the induced changes in aortic pressure and PPG waveforms were concordant. This preliminary canine study demonstrates that PPG can function subcutaneously and that it may serve as a surrogate for acute changes in arterial pressure.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献