Author:
Li Wei,Knowlton David,Van Winkle Donna M.,Habecker Beth A.
Abstract
Regional changes occur in the sympathetic innervation of the heart after myocardial infarction (MI), including loss of norepinephrine (NE) uptake and depletion of neuronal NE. This apparent denervation is accompanied by increased cardiac NE spillover. One potential explanation for these apparently contradictory findings is that the sympathetic neurons innervating the heart are exposed to environmental stimuli that alter neuronal function. To understand the changes that occur in the innervation of the heart after MI, immunohistochemical, biochemical, and molecular analyses were carried out in the heart and stellate ganglia of control and MI rats. Immunohistochemistry with panneuronal markers revealed extensive denervation in the left ventricle (LV) below the infarct, but sympathetic nerve fibers were retained in the base of the heart. Western blot analysis revealed that tyrosine hydroxylase (TH) expression (normalized to a panneuronal marker) was increased significantly in the base of the heart and in the stellate ganglia but decreased in the LV below the MI. NE transporter (NET) binding sites, normalized to total protein, were unchanged, except in the LV, where [3H]nisoxetine binding was decreased. TH mRNA was increased significantly in the left and right stellate ganglia after MI, while NET mRNA was not. In the base of the heart, increased TH coupled with no change in NET may explain the increase in extracellular NE observed after MI. Coupled with substantial denervation in the LV, these changes likely contribute to the onset of cardiac arrhythmias.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献