A chronic and latent lymphatic insufficiency follows recovery from acute lymphedema in the rat foreleg

Author:

Mendez Uziel1,Stroup Emily M.1,Lynch Laura L.1,Waller Anna B.1,Goldman Jeremy1

Affiliation:

1. Biomedical Engineering Department, Michigan Technological University, Houghton, Michigan

Abstract

Secondary lymphedema in humans is a common consequence of axillary lymph node dissection (ALND) to treat breast cancer. Remarkably, secondary lymphedema generally first appears following a delay of over a year and can be triggered suddenly by an inflammatory insult. However, it remains unclear why the apparently functional lymphatic system is unable to accommodate an inflammatory trigger. To provide mechanistic insight into the delayed and rapid secondary lymphedema initiation, we compared the ability of the ALND-recovered rat foreleg lymphatic system to prevent edema during an inflammatory challenge with that of the uninjured lymphatic system. At 73 days postsurgery, the forelegs of ALND- and ALND+-sensitized rats were exposed to the proinflammatory agent oxazolone, which was found to reduce fluid drainage and increase skin thickness in both ALND and ALND+ forelegs ( P < 0.05). However, drainage in the ALND-recovered forelegs was more severely impaired than ALND forelegs, as visualized by indocyanine green lymphography and quantified by interstitial transport of fluid marker ( P < 0.05). Although both ALND+ and ALND forelegs experienced significant inflammation-induced edema with the oxazolone exposure ( P < 0.05), the peak tissue swelling in the ALND+ group was significantly greater than that of the ALND forelegs (arm area peaked at ∼13.4 vs. ∼5.7% swelling, respectively, P < 0.005; wrist diameter peaked at 9.7 vs. 2.2% swelling, respectively, P < 0.005). The findings demonstrate that outward recovery from ALND in the rat foreleg masks an ensuing chronic and latent lymphatic insufficiency, which reduces the ability of the foreleg lymphatic system to prevent edema during an acute inflammatory process.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3