Adenosine A2A receptor modulation of juvenile female rat skeletal muscle microvessel permeability

Author:

Wang Jianjie,Huxley Virginia H.

Abstract

Little is known of the regulation of skeletal muscle microvascular exchange under resting or stimulating conditions. Adenosine (ADO) levels in skeletal muscle increase during physiological (exercise) and pathological (hypoxia, inflammation, and ischemia) conditions. Later stages of these pathologies are characterized by the loss of vascular barrier integrity. This study focused on determining which ADO receptor mediates the robust reduction in microvessel permeability to rat serum albumin ( PsRSA) observed in juvenile female rats. In microvessels isolated from abdominal skeletal muscle, ADO suffusion induced a concentration-dependent reduction in arteriolar [log(IC50) = −9.8 ± 0.2 M] and venular [log(IC50) = −8.4 ± 0.2 M] PsRSA. RT-PCR and immunoblot analysis demonstrated mRNA and protein expression of ADO A1, A2A, A2B, and A3 receptors in both vessel types, and immunofluorescence assay revealed expression of the four subtype receptors in the microvascular walls (endothelium and smooth muscle). PsRSA responses of arterioles and venules to ADO were blocked by 8-( p-sulphophenyl)theophylline, a nonselective A1 and A2 antagonist. An A2A agonist, CGS21680 , was more potent than the A1 agonist, cyclopentyladenosine, or the most-selective A2B agonist, 5′-( N-ethylcarboxamido)adenosine. The ability of CGS21680 or ADO to reduce PsRSA was abolished by the A2A antagonist, ZM241385. An adenylyl cyclase inhibitor, SQ22536, blocked the permeability response to ADO. In aggregate, these results demonstrate that, in juvenile females (before the production of the reproductive hormones), ADO enhances skeletal muscle arteriole and venule barrier function predominantly via A2A receptors using activation of adenylyl cyclase-signaling mechanisms.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3