Affiliation:
1. Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, Ohio; and
2. Department of Biological Sciences, Kent State University, Kent, Ohio
Abstract
Transient receptor potential vanilliod 1 (TRPV1) channels have recently been postulated to play a role in the vascular complications/consequences associated with diabetes despite the fact that the mechanisms through which TRPV1 regulates vascular function are not fully known. Accordingly, our goal was to define the mechanisms by which TRPV1 channels modulate vascular function and contribute to vascular dysfunction in diabetes. We subjected mice lacking TRPV1 [TRPV1(−/−)], db/ db, and control C57BLKS/J mice to in vivo infusion of the TRPV1 agonist capsaicin or the α-adrenergic agonist phenylephrine (PE) to examine the integrated circulatory actions of TRPV1. Capsaicin (1, 10, 20, and 100 μg/kg) dose dependently increased MAP in control mice (5.7 ± 1.6, 11.7 ± 2.1, 25.4 ± 3.4, and 51.6 ± 3.9%), which was attenuated in db/db mice (3.4 ± 2.1, 3.9 ± 2.1, 7.0 ± 3.3, and 17.9 ± 6.2%). TRPV1(−/−)mice exhibited no changes in MAP in response to capsaicin, suggesting the actions of this agonist are specific to TRPV1 activation. Immunoblot analysis revealed decreased aortic TRPV1 protein expression in db/db compared with control mice. Capsaicin-induced responses were recorded following inhibition of endothelin A and B receptors (ETA/ETB). Inhibition of ETAreceptors abolished the capsaicin-mediated increases in MAP. Combined antagonism of ETAand ETBreceptors did not further inhibit the capsaicin response. Cultured endothelial cell exposure to capsaicin increased endothelin production as shown by an endothelin ELISA assay, which was attenuated by inhibition of TRPV1 or endothelin-converting enzyme. TRPV1 channels contribute to the regulation of vascular reactivity and MAP via production of endothelin and subsequent activation of vascular ETAreceptors. Impairment of TRPV1 channel function may contribute to vascular dysfunction in diabetes.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献