Effects of PPAR-γ ligands on vascular smooth muscle marker expression in hypertensive and normal arteries

Author:

Atkins Kevin B.,Northcott Carrie A.,Watts Stephanie W.,Brosius Frank C.

Abstract

Having previously demonstrated that glucose transporter-4 (GLUT4) expression was reduced in aortas and carotid arteries of deoxycorticosterone acetate (DOCA) salt-hypertensive rats, we hypothesized that troglitazone (TG), through activation of peroxisome proliferator-activated receptor-γ (PPAR-γ), would stabilize GLUT4 expression and possibly preserve the differentiated phenotype in vascular smooth muscle cells. In DOCA salt-hypertensive rats treated with TG (100 mg/day), there was a significant ( P < 0.001) decrease in systolic blood pressure (BP; 149.9 ± 4.4 mmHg) compared with the untreated DOCA salt-hypertensive rats (202.2 ± 10.34 mmHg). Separate trials with rosiglitazone (RS; 3 mg/day) demonstrated a significant ( P < 0.001) decrease in BP (DOCA salt, 164.2 ± 9.8 vs. DOCA-RS, 124.9 ± 3.7 mmHg) comparable to that with TG. Expression of GLUT4, h-caldesmon, and smooth muscle myosin heavy chain SM2 was significantly decreased in aortas of DOCA salt-hypertensive rats and was reversed by TG to levels similar to those in aortas of sham-treated rats. TG (50 μM) induced GLUT4 and h-caldesmon expression in 24-h culture of explanted carotid arteries of DOCA salt-hypertensive rats, and the endogenous PPAR-γ ligand 15-deoxy-Δ12–14-prostaglandin J2 (PGJ2; 20 μM) and TG (50 μM) similarly increased GLUT4, h-caldesmon, and SM2 protein expression in explanted aortas. The expression of activated, phosphorylated Akt was increased by PGJ2 and TG with no significant effect on total Akt levels. Inhibition of phosphorylated Akt expression using the phosphatidylinositol 3-kinase inhibitor LY-294002 (16 μM) abrogated the increased expression of h-caldesmon and SM2. These data demonstrate that PPAR-γ agonists maintain or induce expression of markers of the contractile phenotype independently of their effects on hypertension, and that this effect may be mediated through activation of phosphatidylinositol 3-kinase/Akt.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3