Temporal Coding of Intensity of NaCl and HCl in the Nucleus of the Solitary Tract of the Rat

Author:

Chen Jen-Yung1,Victor Jonathan D.2,Di Lorenzo Patricia M.1

Affiliation:

1. Department of Psychology, Binghamton University, Binghamton; and

2. Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, New York

Abstract

Sensory neurons are generally tuned to a subset of stimulus qualities within their sensory domain and manifest this tuning by the relative size of their responses to stimuli of equal intensity. However, response size alone cannot unambiguously signal stimulus quality, since response size also depends on stimulus intensity. Thus a common problem faced by sensory systems is that response size (e.g., spike count) confounds stimulus quality and intensity. Here, using the gustatory system as a model, we asked whether temporal firing characteristics could disambiguate these axes. To address this question, we recorded taste responses of single neurons in the nucleus of the solitary tract (NTS, the first central gustatory relay) in anesthetized rats to a range of concentrations of NaCl and HCl and their binary mixtures. To assess the contribution of the temporal characteristics of the response to discrimination among tastants, a family of metrics that quantifies the similarity of two spike trains in terms of spike count and spike timing was used. Results showed that the spike count produced by different taste qualities and different concentrations overlapped in most cells, implying that information conveyed by spike count is imprecise. Multidimensional scaling analysis of taste responses using similarity of temporal characteristics showed that different taste qualities, intensities, and mixtures formed distinct clusters in this “temporal coding” taste space and were arranged in a logical order. Thus the temporal structure of taste responses in single cells in the NTS can simultaneously convey information about both taste quality and intensity.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3