Author:
Weigt Henry U.,Adolph Oliver,Georgieff Michael,Georgieff Eva M.,Föhr Karl J.
Abstract
Previous studies had not excluded the possibility that the mechanism by which Xenon (Xe) blocks N-methyl-d-aspartate (NMDA) receptors might be that of an open-channel blocker. We tested this possibility on mutant NMDA receptors carrying an alanine (A) to cysteine (C) mutation located within the SYTANLAAF-motif of the third transmembrane region (TM3). This mutation was shown to yield constitutively open ion channels after modification with a thiol-modifying reagent. We expressed such mutant channels in Neuro2A cells and recorded glutamate (50 μM)-induced currents in the whole cell recording mode. Although Xe (3.5 mM) blocked the currents through the wild-type receptor NR1-1a/NR2A and NR1-1a/NR2B by ∼40% and those through the mutant receptors NR1-1a/NR2A(A650C) or NR1-1a/NR2B(A651C) by ∼30%, it was unable to block the currents through the methane thiosulfonate etyhlammonium-modified mutant receptors. On the other hand, established open-channel blockers of the NMDA receptor such as MK-801 (1 μM) or Mg ions (Mg2+; 1 mM) were able to block these permanently open channels. These results suggest that Xe does not act as a classical open-channel blocker at the NMDA receptor.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献