Alignment to natural and imposed mismatches between the senses

Author:

van der Kooij K.1,Brenner E.1,van Beers R. J.1,Schot W. D.12,Smeets J. B. J.1

Affiliation:

1. MOVE Research Institute Amsterdam, Faculty of Human Movement Sciences, VU University Amsterdam, Amsterdam, The Netherlands; and

2. Center for Motor and Cognitive Disabilities, Utrecht University, Utrecht, The Netherlands

Abstract

Does the nervous system continuously realign the senses so that objects are seen and felt in the same place? Conflicting answers to this question have been given. Research imposing a sensory mismatch has provided evidence that the nervous system realigns the senses to reduce the mismatch. Other studies have shown that when subjects point with the unseen hand to visual targets, their end points show visual-proprioceptive biases that do not disappear after episodes of visual feedback. These biases are indicative of intersensory mismatches that the nervous system does not align for. Here, we directly compare how the nervous system deals with natural and imposed mismatches. Subjects moved a hand-held cube to virtual cubes appearing at pseudorandom locations in three-dimensional space. We alternated blocks in which subjects moved without visual feedback of the hand with feedback blocks in which we rendered a cube representing the hand-held cube. In feedback blocks, we rotated the visual feedback by 5° relative to the subject's head, creating an imposed mismatch between vision and proprioception on top of any natural mismatches. Realignment occurred quickly but was incomplete. We found more realignment to imposed mismatches than to natural mismatches. We propose that this difference is related to the way in which the visual information changed when subjects entered the experiment: the imposed mismatches were different from the mismatch in daily life, so alignment started from scratch, whereas the natural mismatches were not imposed by the experimenter, so subjects are likely to have entered the experiment partly aligned.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3