Time-Frequency Representation of Inspiratory Motor Output in Anesthetized C57BL/6 Mice In Vivo

Author:

O'Neal Marvin H.,Spiegel Evan T.,Chon Ki H.,Solomon Irene C.

Abstract

Inspiratory motor discharges, in addition to long-time-scale rhythmic oscillatory bursting, exhibit short-time-scale rhythmic oscillations that have been identified, and subsequently characterized, using power spectral analyses [predominantly fast-Fourier transforms (FFT)]. These analyses assume that the signal being analyzed is stationary; however, this is not the case for most biological signals, which exhibit varying degrees of nonstationarity. To overcome this limitation, time-frequency methods, which provide not only the frequency content but also information regarding the timing of these fast rhythmic oscillations (i.e., dynamics of spectral activity), should be used. Thus this study was performed to investigate the dynamic or time-varying features of spectral activity in inspiratory motor output. Both conventional time-invariant and time-frequency (time-varying) spectral analysis methods were performed on recordings of diaphragm EMG, phrenic nerve, and hypoglossal nerve discharges obtained from spontaneously breathing urethan-anesthetized adult C57BL/6 mice. Conventional time-invariant spectral analysis using a FFT algorithm revealed three dominant peaks in the power spectrum, which were located at 1) 20–46, 2) 83–149, and 3) 177–227 Hz. Time-frequency spectral analysis using a generalized time-frequency representation (TFR) with the smoothed pseudo-Wigner-Ville distribution (SPWD) kernel confirmed the general location of these spectral peaks, identified additional spectral peaks within the frequency ranges described above, and revealed a time-dependent expression of spectral activity within the inspiratory burst for each of the frequency ranges. Furthermore, this method revealed that 1) little or no spectral activity occurs during the initial portion of the inspiratory burst in any of the frequency ranges identified, 2) transient oscillations in the magnitude of spectral power exist where spectral activity occurs, and 3) total spectral power exhibits an augmenting pattern over the course of the inspiratory burst. These data, which provide the first description of spectral content in inspiratory motor discharges in adult mice, show that both time-invariant and time-varying spectral analysis methods are capable of identifying short-time-scale rhythmic oscillations in inspiratory motor discharge (as expected); however, the dynamic (i.e., timing) features of this oscillatory activity can only be obtained using the time-frequency method. We suggest that time-frequency methods, such as the SPWD, should be used in future studies examining short-time-scale (fast) rhythmic oscillations in inspiratory motor discharges, because additional insight into the neural control mechanisms that participate in inspiratory-phase neuronal and motoneuronal synchronization may be obtained.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference56 articles.

1. Force reserve of the diaphragm in patients with chronic obstructive pulmonary disease

2. Gap Junctions and Inhibitory Synapses Modulate Inspiratory Motoneuron Synchronization

3. High-frequency oscillations in human brain

4. Cortical drives to human muscle: the Piper and related rhythms

5. Bruce EN. Significance of high-freqeuncy osscillation as a functional index of respiratory control. In: Neurobiology of the Control of Breathing, edited by von Euler C and Lagercrantz H. New York: Raven Press, 1986, p. 223–229.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3