Author:
Tavalin Steven J.,Shepherd Dawn,Cloues Robin K.,Bowden Sarah E. H.,Marrion Neil V.
Abstract
The influx of calcium (Ca2+) ions through L-type channels underlies many cellular processes, ranging from initiation of gene transcription to activation of Ca2+-activated potassium channels. L-type channels possess a diagnostic pharmacology, being enhanced by the dihydropyridine BAY K 8644 and benzoylpyrrole FPL 64176. It is assumed that the action of these compounds is independent of the ion conducted through the channel. In contrast to this assumption, modulation of L-type channel activity in acutely dissociated rat CA1 hippocampal neurons depended on the divalent ion identity. BAY K 8644 and FPL 64176 substantially increased single-channel open time only when barium (Ba2+) was the permeant ion. BAY K 8644 increased single-channel conductance when either Ba2+ or Ca2+ ions were the charge carrier, an effect not observed with FPL 64176. BAY K 8644 enhanced the whole cell L-type channel Ca2+- or Ba2+-carried current without a change in deactivation tail kinetics. In contrast, enhancement by FPL 64176 was associated with a dramatic slowing of deactivation kinetics only when Ba2+ and not Ca2+ was the charge carrier. Current activation was slowed by FPL 64176 with either charge carrier, an effect arising from a clustering of agonist-modified long-duration openings toward the end of the voltage step. These data indicate that agonists enhanced L-type current by distinct mechanisms dependent on the permeant ion, indicating that care must be considered when used as diagnostic tools.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献