Modeling constraints to redundancy in bimanual force coordination

Author:

Hu Xiaogang1,Newell Karl M.1

Affiliation:

1. Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania

Abstract

This study investigated the interactive influence of organismic, environmental, and task constraints on the organization of redundant force coordination patterns and the hypothesis that each of the three categories of constraints is weighted based on their relative influence on coordination patterns and the realization of the task goal. In the bimanual isometric force experiment, the task constraint was manipulated via different coefficients imposed on the finger forces such that the weighted sum of the finger forces matched the target force. We examined three models of task constraints based on the criteria of task variance (minimum variance model) and efficiency of muscle force output (coefficient-independent and coefficient-dependent efficiency models). The environmental constraint was quantified by the perceived performance error, and the organismic constraint was quantified by the bilateral coupling effect (i.e., symmetric force production) between hands. The satisficing approach was used in the models to quantify the constraint weightings that reflect the interactive influence of different categories of constraints on force coordination. The findings showed that the coefficient-dependent efficiency model best predicted the redundant force coordination patterns across trials. However, the within-trial variability structure revealed that there was not a consistent coordination strategy in the online control of the individual trial. The experimental findings and model tests show that the force coordination patterns are adapted based on the principle of minimizing muscle force output that is coefficient dependent rather than on the principle of minimizing signal-dependent variance. Overall, the results support the proposition that redundant force coordination patterns are organized by the interactive influence of different categories of constraints.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference60 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3