Lung divisions for models of cardiopulmonary interaction – preliminary tests

Author:

Pałko Krzysztof Jakub1ORCID,Kołodziej Dariusz2ORCID,Darowski Marek1ORCID

Affiliation:

1. DEPARTMENT IV: Department of Modeling and Supporting of Internal Organs Functions, Nalecz Institute of Biocybernetics and Biomedical Engineering , Polish Academy of Sciences , Warsaw , Poland

2. Warsaw University of Technology, Faculty of Electronics and Information Technology , Institute of Radioelectronics and Multimedia Technology , Warsaw , Poland

Abstract

Abstract Introduction: The perfusion of a part of the lung depends on its distance from the pulmonary trunk (differences in vascular resistance) and on the horizontal plane (differences in hydrostatic pressure). The aim of this study was to determine the geometric parameters characterising their positions and sizes in order to analyse the diffusion of the ventilation/perfusion ratio. Material and methods: A developed virtual respiratory system has been supplemented with an appropriate model of pulmonary circulation that uses a lung outline that is divided into parts based on an anatomical atlas and a CT image; it comprises a 3D geometric model of the lungs that was developed using the Inventor CAD software (Autodesk, Inc, San Francisco, USA). Each panel was divided into 2 horizontal and 8 vertical parts; the 16-part division was then modified. Results: When taking human lungs as a research object and simulating their accompanying physical, biological, or biochemical phenomena, one necessary task is to construct a spatial model of the lungs that takes into account, and maintains awareness of, the limitations of the source of data that is relied upon. The developed modified geometric model of lung division turned out to be useful and was successfully applied to a virtual patient, among others, as part of the VirRespir project. Conclusions: Finally, we can conclude that the virtual cardiorespiratory system thus elaborated may serve as a proper tool for the preliminary analysis of such complex interactions, considering the elaborated model of the lung’s divisions and its future improvements.

Publisher

Walter de Gruyter GmbH

Reference33 articles.

1. World Health Organization. The top 10 causes of death. WHO Newsroom Fact sheet Detail. Published January, 2019. Accessed November 2023. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death.

2. Prisk GK. Microgravity and the respiratory system. European Respiratory Journal. 2014;43(5):1459-1471. https://doi.org/10.1183/09031936.00001414

3. Vidal Melo MF. Effect of cardiac output on pulmonary gas exchange: role of diffusion limitation with V̇a/Q̇ mismatch. Respiration Physiology. 1998;113(1):23-32. https://doi.org/10.1016/S0034-5687(98)00042-5

4. Lumb AB. Nunn’s Applied Respiratory Physiology. 8th Edition. Elsevier Health Sciences; 2016.

5. Instytut Biochemii i Biofizyki PAN. VirRespir. Biocentrum Ochota. Published 2017. Accessed November, 2023. http://bco.ibb.waw.pl/en/bio-med-en/virrespir-en,79/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3