Physical aspects of Bragg curve of therapeutic oxygen-ion beam: Monte Carlo simulation

Author:

Ounoughi Nabil1,Dribi Yamina1,Boukhellout Abdelmalek1,Kharfi Faycal2

Affiliation:

1. Radiation Physics and Applications Laboratory , Mohammed Seddik Benyahia University , Jijel , Algeria

2. Laboratory of Dosing, Analysis and Characterization in High Resolution (DAC) , Ferhat Abbas Setif1 University , Algeria

Abstract

Abstract Introduction: Oxygen (16O) ion beams have been recommended for cancer treatment due to its physical Bragg curve feature and biological property. The goal of this research is to use Monte Carlo simulation to analyze the physical features of the 16O Bragg curve in water and tissue. Material and methods: In order to determine the benefits and drawbacks of ion beam therapy, Monte Carlo simulation (PHITS code) was used to investigate the interaction and dose deposition properties of oxygen ions beam in water and human tissue medium. A benchmark study for the depth–dose distribution of a 16O ion beam in a water phantom was established using the PHITS code. Bragg’s peak location of 16O ions in water was simulated using the effect of water’s mean ionization potential. The contribution of secondary particles produced by nuclear fragmentation to the total dose has been calculated. The depth and radial dose profiles of 16O, 12C, 4He, and 1H beams were compared. Results: It was shown that PHITS accurately reproduces the measured Bragg curves. The mean ionization potential of water was estimated. It has been found that secondary particles contribute 10% behind the Bragg peak for 16O energy of 300 MeV/u. The comparison of the depth and radial dose profiles of 16O, 12C, 4He, and 1H beams, shows clearly, that the oxygen beam has the greater deposited dose at Bragg peak and the minor lateral deflection. Conclusions: The combination of these physical characteristics with radio-biological ones in the case of resistant organs located behind the tumor volume, leads to the conclusion that the 16O ion beams can be used to treat deep-seated hypoxic tumors.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3