Automation of slice thickness measurements in computed tomography images of AAPM CT performance phantom using a non-rotational method

Author:

Ximenes Angelita D1,Anam Choirul1ORCID,Hidayanto Eko1,Naufal Ariij1,Rukmana Dito A2,Dougherty Geoff3

Affiliation:

1. Departement of Physics, Faculty of Sciences and Mathematics , Diponegoro University , Jl. Prof. Soedarto SH, Tembalang, Semarang 50275, Central Java , Indonesia

2. Installation of Radiology, Indriati Hospital Solo Baru, Jl.Palem Raya, Village III , Langenharjo, Grogol District, Sukaharjo Regency 57552, Central Java , Indonesia

3. Department of Applied Physics and Medical Imaging , California State University Channel Islands , Camarillo , , USA

Abstract

Abstract Purpose: The current study proposes a method for automatically measuring slice thickness using a non-rotational method on the middle stair object of the AAPM CT performance phantom image. Method: The AAPM CT performance phantom was scanned by a GE Healthcare 128-slice CT scanner with nominal slice thicknesses of 0.625, 1.25, 2.5, 3.75, 5, 7.5 and 10 mm. The automated slice thickness was measured as the full width at half maximum (FWHM) of the profile of the middle stair object using a non-rotational method. The non-rotational method avoided rotating the image of the phantom. Instead, the lines to make the profiles were automatically rotated to confirm the stair’s location and rotation. The results of this non-rotational method were compared with those from a previous rotational method. Results: The slice thicknesses from the non-rotational method were 1.55, 1.86, 3.27, 4.86, 6.58, 7.57, and 9.66 mm for nominal slice thicknesses of 0.625, 1.25, 2.4, 3.75, 5, 7.5, and 10 mm, respectively. By comparison, the slice thicknesses from the rotational method were 1.53, 1.87, 3.32, 4.98, 6.77, 7.75, and 9.80 mm, respectively. The results of the nonrotational method were slightly lower (i.e. 0.25%) than the results of the rotational method for each nominal slice thickness, except for the smallest slice thickness. Conclusions: An alternative algorithm using a non-rotational method to measure the slice thickness of the middle stair object in the AAPM CT performance phantom was successfully implemented. The slice thicknesses from the nonrotational method results were slightly lower than the rotational method results for each nominal slice thickness, except at the smallest nominal slice thickness (0.625 mm).

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Objective evaluation method using multiple image analyses for panoramic radiography improvement;Polish Journal of Medical Physics and Engineering;2023-05-04

2. Automatic measurement of slice thickness in CT images of a Siemens phantom;Biomedical Physics & Engineering Express;2023-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3