Evaluation of the polarity effect of Roos parallel plate ionization chamber in build-up region

Author:

Al-Aghbari Arwa Ahmed1ORCID

Affiliation:

1. Physics Department , Sana’a University , Sana’a , Yemen

Abstract

Abstract Purpose: Despite widespread studying of the polarity effect of Roos parallel plate ion chamber in electron beams as mentioned in several protocols, no investigations have up till now studied this effect in photon beams in the build-up region. It is important to examine its polarity effect in the build-up region for photon beams, so this is the first work that focuses in to evaluate the polarity effect of the Roos chamber in the surface and build-up region and comparing its effect with other chambers. Methods: In this study, the Roos chamber was irradiated by a Theratron 780E 60Co beam to a known polarity effect. The Polarity effects of 5×5 up to 35×35 cm2 field sizes at positive and negative polarizing voltages were measured in the build-up region from surface to 0.7 cm in a solid water phantom. Results: The polarity ratios (PRs) were obtained at 1.020 ± 0.00 and 1.015 ± 0.00 for field sizes 5 × 5 up to 35 × 35 cm2, respectively. For the same fields, the percentage of polarity effects (%PEs) was obtained at 1.99% ± 0.00% and 1.47% ± 0.02%, respectively. The results found that the %PEs decrease with increased field sizes and depths. Moreover, the %PEs exhibited a decrease with an increased percentage surface dose (%SD). The uncertainty of %PE was estimated as 0.01% for all measurements in this study. Conclusions: As a result, the average %PE of the Roos chamber described here is equal to 0.756% ± 0.013% for all depths and field sizes for the 60Co γ-ray beam. It has introduced a less percentage of polarity effect than other chambers.

Publisher

Walter de Gruyter GmbH

Reference22 articles.

1. 1. Schulz RJ, Almond PR, Cunningham JC, et al. A protocol for the determination of absorbed dose from high-energy photon and electron beams (AAPM TG-21). Med Phys. 1983;10(3):741-771. https://doi.org/10.1118/1.595446

2. 2. Khan F M, Doppke K P, Hogstrom K R, et al. Clinical electron-beam dosimetry. (AAPM TG-25). Med Phys. 1991;18(1):73-109. https://doi.org/10.1118/1.596695

3. 3. International Atomic Energy Agency. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. Technical Reports Series No. 398. Vienna; 2000.

4. 4. International Atomic Energy Agency. The use of plane-parallel ionization chambers in high-energy electron and photon beams: An international code of practice for dosimetry. Technical Reports Series No. 381. Vienna; 1995.

5. 5. Wickman G, Holmstrom T. Polarity effect in plane-parallel ionization chambers using air or a dielectric liquid as ionization medium. Med Phys. 1992;19(3):637-640. https://doi.org/10.1118/1.596934

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3