Non-invasive method for blood glucose monitoring using ECG signal

Author:

Fellah Arbi Khadidja1,Soulimane Sofiane1,Saffih Faycal2

Affiliation:

1. Biomedical Engineering Laboratory , University of Tlemcen , Algeria

2. Centre for the Development of Advanced Technologies (CDTA) at Setif , University of Setif1 , Algeria

Abstract

Abstract Introduction: Tight glucose monitoring is crucial for diabetic patients by using a Continuous Glucose Monitor (CGM). The existing CGMs measure the Blood Glucose Concentration (BGC) from the interstitial fluid. These technologies are quite expensive, and most of them are invasive. Previous studies have demonstrated that hypoglycemia and hyperglycemia episodes affect the electrophysiology of the heart. However, they did not determine a cohort relationship between BGC and ECG parameters. Material and method: In this work, we propose a new method for determining the BGC using surface ECG signals. Recurrent Convolutional Neural Networks (RCNN) were applied to segment the ECG signals. Then, the extracted features were employed to determine the BGC using two mathematical equations. This method has been tested on 04 patients over multiple days from the D1namo dataset, using surface ECG signals instead of intracardiac signal. Results: We were able to segment the ECG signals with an accuracy of 94% using the RCNN algorithm. According to the results, the proposed method was able to estimate the BGC with a Mean Absolute Error (MAE) of 0.0539, and a Mean Squared Error (MSE) of 0.1604. In addition, the linear relationship between BGC and ECG features has been confirmed in this paper. Conclusion: In this paper, we propose the potential use of ECG features to determine the BGC. Additionally, we confirmed the linear relationship between BGC and ECG features. That fact will open new perspectives for further research, namely physiological models. Furthermore, the findings point to the possible application of ECG wearable devices for non-invasive continuous blood glucose monitoring via machine learning.

Publisher

Walter de Gruyter GmbH

Reference56 articles.

1. 1. L’ATLAS DU DIABÈTE DE LA FID; 9ème Édition 2019. Federation internationale du diabete, 2019. https://www.diabete.qc.ca/fr/comprendre-le-diabete/ressources/documents-utiles/atlas/

2. 2. Près de 9 millions d’Algériens diabétiques d’ici à 20 ans. https://www.algerie360.com/pres-de-9-millions-dalgeriens-diabetiques-dicia-20-ans/ (acceding 10/12/2020)

3. 3. The Diabetes Control Complications Trial/Epidemiology of Diabetes Interventions and Complications DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Eng J Med. 2005;353(25):2643-2653. https://doi.org/10.1056/nejmoa05218710.1056/NEJMoa052187263799116371630

4. 4. Freeman R. Hypoglycemia and the Autonomic Nervous System. In: Veves, A., Malik, R.A. (eds) Diabetic Neuropathy. Clinical Diabetes. Humana Press; 2007. https://doi.org/10.1007/978-1-59745-311-0_2310.1007/978-1-59745-311-0_23

5. 5. Chen C, Zhao XL, Li ZH, et al. Current and Emerging Technology for Continuous Glucose Monitoring. Sensors. 2017;17(1):182. https://doi.org/10.3390/s1701018210.3390/s17010182529875528106820

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a high-performance differential amplifier for collecting electrocardiogram signals;2023 IEEE 6th International Conference on Information Systems and Computer Aided Education (ICISCAE);2023-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3