Use of Electrical Resistivity Tomography for Joint Geophysical and Geotechnical Landslide Characterization: A Case Study

Author:

Kherrouba Hassiba1,Lamara Mohammed2,Benzaid Riad1

Affiliation:

1. Geological Engineering Research Laboratory (LGG) , Jijel University , Algeria

2. 2 Laboratory of Civil Engineering and Environment , Jijel University , Algeria

Abstract

Abstract Slope movement processes include complex soil and rock failure mechanisms. Their study benefits from a multidisciplinary approach based on a wide range of information including geological and geomorphological mapping, and geotechnical and geophysical investigations. This research paper focuses on the characterization of the Tamentout landslide that occurs in the southeast of Jijel province. The study area belongs to the Tellian domain in which the geological outcrops are dominated by Senonian formations, composed of marl deposits overlain by Numidian flysch of Aquitano-Burdigalian age, with a sloping topography ranging from 20° to 30°. The geophysical approach consists of processing the available geophysical data of resistivity, obtained by the Electrical Resistivity Tomography (ERT). This study aims to characterize the internal structure, and the changes in water saturation within the unstable mass and locate the depth of slip surface associated with this landslide. Through this work, we combined geological and geotechnical investigations with electrical resistivity tomography (ERT). This combination gave a more detailed image of the substrate geology and structure of the landslide zone. The 2D resistivity results show that the basement consists of two main formations. The first one is a highly conductive formation with a resistivity range between 2 and 25 Ωm, a depth of 0-8 m, and is interpreted as a saturated marl-clay overlaying. The second, a hard and compact formation with a resistivity range between 50 and 200 Ωm and a depth range of 8 to 40 m, was interpreted as a substrate of tellian marls. The presence of boulders of Numidian sandstone within the two formations is materialized by a very high resistivity value ranging from 500 to 1000 Ωm. The slip surface was located on the layer with low resistivity (2-25 Ωm). The precise determination of the depth of the shear zone is of vital use in implementing mitigation measures and carrying out the stabilization work of this unstable zone. Through this work, we will highlight the advantage of the combination of available results of the geological, geotechnical investigations and electrical resistivity tomography (ERT) carried out in the study area.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3