Effect of Organic and Mineral Soil Fractions on Sorption Behaviour of Chlorophenol and Triazine Micropollutants

Author:

Stipičević Sanja1,Fingler Sanja1,Drevenkar Vlasta1

Affiliation:

1. Institute for Medical Research and Occupational Health, Zagreb, Croatia

Abstract

Effect of Organic and Mineral Soil Fractions on Sorption Behaviour of Chlorophenol and Triazine Micropollutants This article compares the sorption behaviour of 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, pentachlorophenol, chlorotriazine atrazine, methylthiotriazine ametryn, methoxytriazine atratone, hydroxyatrazine, and didelakylated atrazine in a topsoil and an aquifer sediment before and after removal of sorbent organic matter and in humic acid. Freundlich isotherm coefficients K f and 1/n and free energy change (δG°) were calculated for all compounds in all sorbents. According to sorbent pH values, chlorophenolate anions and uncharged triazine species dominated in all sorption experiments with topsoil and aquifer sediment. In experiments with humic acid, chlorophenols, atrazine, and didealkylated atrazine existed almost completely as neutral species, whereas protonated species dominated for hydroxyatrazine, atratone, and ametryn. In addition to a hydrophobic partition, sorption of all compounds in native soil and sediment sorbents includes specific, more polar interactions, which greatly depend on sorbate acidity/basicity, specific properties of the sorbent organic matter and of mineral surface, as well as on the system pH. A significantly greater sorption intensity of all compounds in "organic-free" than in the native aquifer sediment confirmed the importance and possible dominance of mineral surface in the sorption process. Sorption intensity of chlorophenol and triazine compounds in humic acid was closely related to compound hydrophobicity. Greater sorption of almost completely protonated hydroxyatrazine than of the more hydropohobic but uncharged atrazine indicated different humic acid reaction sites for two compounds and consequently different sorption mechanisms.

Publisher

Walter de Gruyter GmbH

Subject

Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3