Designing, Construction, Assessment, and Efficiency of Local Exhaust Ventilation in Controlling Crystalline Silica Dust and Particles, and Formaldehyde in a Foundry Industry Plant

Author:

Morteza Mortezavi Mehrizi1,Hossein Kakooi2,Amirhossein Matin3,Naser Hasheminegad4,Gholamhossein Halvani1,Hossein Fallah1

Affiliation:

1. 1School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

2. 2School of Health, Tehran University of Medical Sciences,Tehran, Iran

3. 3School of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4. 4School of Health, Kerman University of Medical Sciences, Kerman, Iran

Abstract

The purpose of the present study was to design and assess the efficiency of a local exhaust ventilation system used in a foundry operation to control inhalable dust and particles, microcrystal particles, and noxious gases and vapours affecting workers during the foundry process. It was designed based on recommendations from the American Conference of Governmental Industrial Hygiene. After designing a local exhaust ventilation system (LEV), we prepared and submitted the implementation plan to the manufacturer. High concentrations of crystalline silica dust and formaldehyde, which are common toxic air pollutants in foundries, were ultimately measured as an indicator for studying the efficiency of this system in controlling inhalable dust and particles as well as other air pollutants. The level of occupational exposure to silica and formaldehyde as major air pollutants was assessed in two modes: first, when the LEV was on, and second, when it was off. Air samples from the exposure area were obtained using a personal sampling pump and analysed using the No. 7601 method for crystal silica and the No. 2541 method for formaldehyde of the National Institute for Occupational Safety and Health (NIOSH). Silica and formaldehyde concentrations were determined by visible absorption spectrophotometry and gas chromatography. The results showed that local exhaust ventilation was successful in preserving the crystal silica particles in the work environment at a level below the NIOSH maximum allowed concentration (0.05 mg m-3). In contrast, formaldehyde exceeded the NIOSH limit (1 ppm or 1.228 mg m-3).

Publisher

Walter de Gruyter GmbH

Subject

Public Health, Environmental and Occupational Health,Toxicology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3