Defects and Incompatibilities of Pipes Manufactured by Pilgrim Method

Author:

Biś Jesica1,Koczurkiewicz Bartosz1,Mazur Igor2

Affiliation:

1. Czestochowa University of Technology , Poland

2. Lipetsk State Technical University , Russian Federation

Abstract

Abstract The increase in the quality requirements for the pipes and the increasing needs to reduce production costs, while increasing the efficiency of the process in market of hot rolled pipes are observed. One of the cost reduction factors is the reduction of the number of defects by early detection and, if possible, the removal of non-conformities. Incompatibility is an error that can be removed in accordance with the performance standard that does not cause defects (Norma API). The defect is imperfection that is so important that it is the basis for the removal of the product or its part based on the criteria set out in the performance standards. In pipe manufacturing processes, defects and batch incompatibilities can be distinguished, which arise in the steelworks during metal solidification and roll forming in the course of metal processing. The defect may also arise as a result of removing steel material or result from rolling processes defects. The paper presents the analysis of the process of quality control of pipes manufactured using the pilgrim method on the basis of real process data. The analysis were involved 1070 pieces of ingots from 11 different melts for rolling pipes. At various stages of production, discrepancies and defects were revealed, which were caused by metallurgical or technological defects associated with rolling pipes. The total amount of discrepancies and defects eliminated 168 pieces of finished pipes. The aim of the work is to show that by means of appropriately selected methods of eliminating imperfections, it is possible to increase the efficiency of the manufacturing process.

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A surface defect detection method for steel pipe based on improved YOLO;Mathematical Biosciences and Engineering;2024

2. Risk-based inspection planning for internal surface defected oil pipelines exposed to fatigue;International Journal of Pressure Vessels and Piping;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3