A Strong and Efficient Baseline for Vehicle Re-Identification Using Deep Triplet Embedding

Author:

Kumar Ratnesh1,Weill Edwin1,Aghdasi Farzin1,Sriram Parthasarathy1

Affiliation:

1. NVIDIA

Abstract

Abstract In this paper we tackle the problem of vehicle re-identification in a camera network utilizing triplet embeddings. Re-identification is the problem of matching appearances of objects across different cameras. With the proliferation of surveillance cameras enabling smart and safer cities, there is an ever-increasing need to re-identify vehicles across cameras. Typical challenges arising in smart city scenarios include variations of viewpoints, illumination and self occlusions. Most successful approaches for re-identification involve (deep) learning an embedding space such that the vehicles of same identities are projected closer to one another, compared to the vehicles representing different identities. Popular loss functions for learning an embedding (space) include contrastive or triplet loss. In this paper we provide an extensive evaluation of triplet loss applied to vehicle re-identification and demonstrate that using the recently proposed sampling approaches for mining informative data points outperform most of the existing state-of-the-art approaches for vehicle re-identification. Compared to most existing state-of-the-art approaches, our approach is simpler and more straightforward for training utilizing only identity-level annotations, along with one of the smallest published embedding dimensions for efficient inference. Furthermore in this work we introduce a formal evaluation of a triplet sampling variant (batch sample) into the re-identification literature. In addition to the conference version [24], this submission adds extensive experiments on new released datasets, cross domain evaluations and ablation studies.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

Reference62 articles.

1. [1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

2. [2] Y. Bai, Y. Lou, F. Gao, S. Wang, Y. Wu, and L. Duan. Group Sensitive Triplet Embedding for Vehicle Reidentification. IEEE Transactions on Multimedia, 2018.10.1109/TMM.2018.2796240

3. [3] S. Bak, M. S. Biagio, R. Kumar, V. Murino, and F. Bremond. Exploiting Feature Correlations by Brownian Statistics for People Detection and Recognition. IEEE Transactions on Systems, Man, and Cybernetics, 2017.10.1109/TSMC.2016.2531658

4. [4] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. Lecun, C. Moore, E. Säckinger, and R. Shah. Signature Verification Using a “Siamese” Time Delay Neural Network. International Journal of Pattern Recognition and Artificial Intelligence 1993.10.1142/S0218001493000339

5. [5] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similiarty metric discriminatively, with application to face verification. In CVPR, 2005.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3