Solution of Linear and Non-Linear Boundary Value Problems Using Population-Distributed Parallel Differential Evolution
Author:
Nasim Amnah1, Burattini Laura1, Fateh Muhammad Faisal2, Zameer Aneela2
Affiliation:
1. Department of Information Engineering (DII) , Università Politecnica delle Marche , Via Brecce Bianche, 60131 Ancona , Italy 2. Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences , Nilore, 44000 Islamabad , Pakistan
Abstract
Abstract
Cases where the derivative of a boundary value problem does not exist or is constantly changing, traditional derivative can easily get stuck in the local optima or does not factually represent a constantly changing solution. Hence the need for evolutionary algorithms becomes evident. However, evolutionary algorithms are compute-intensive since they scan the entire solution space for an optimal solution. Larger populations and smaller step sizes allow for improved quality solution but results in an increase in the complexity of the optimization process. In this research a population-distributed implementation for differential evolution algorithm is presented for solving systems of 2
nd
-order, 2-point boundary value problems (BVPs). In this technique, the system is formulated as an optimization problem by the direct minimization of the overall individual residual error subject to the given constraint boundary conditions and is then solved using differential evolution in the sense that each of the derivatives is replaced by an appropriate difference quotient approximation. Four benchmark BVPs are solved using the proposed parallel framework for differential evolution to observe the speedup in the execution time. Meanwhile, the statistical analysis is provided to discover the effect of parametric changes such as an increase in population individuals and nodes representing features on the quality and behavior of the solutions found by differential evolution. The numerical results demonstrate that the algorithm is quite accurate and efficient for solving 2
nd
-order, 2-point BVPs.
Publisher
Walter de Gruyter GmbH
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems
Reference24 articles.
1. [1] Gong, Y.J., Chen, W.N., Zhan, Z.H., Zhang, J., Li, Y., Zhang, Q. and Li, J.J., 2015, Distributed evolutionary algorithms and their models: A survey of the state-of-the-art, Applied Soft Computing, 34, pp. 286-300. DOI: 10.1016/j.asoc.2015.04.06110.1016/j.asoc.2015.04.061 2. [2] Zelinka, I., 2015, A survey on evolutionary algorithms dynamics and its complexity–Mutual relations, past, present and future, Swarm and Evolutionary Computation, 25, pp. 2-14. DOI: 10.1016/j.swevo.2015.06.00210.1016/j.swevo.2015.06.002 3. [3] Price, K., Storn, R.M. and Lampinen, J.A., 2006, Differential evolution: a practical approach to global optimization, Springer Science Business Media, ISBN: 978-3-540-20950-8 4. [4] Storn, R. and Price, K., 1997, Differential Evolution–a simple and efficient heuristic for global optimization over continuous spaces, Journal of global optimization, 11(4), pp. 341-359. DOI: 10.1023/A:100820282132810.1023/A:1008202821328 5. [5] Charles, A.J. and Parks, G.T., 2017, Mixed Oxide LWR Assembly Design Optimization Using Differential Evolution Algorithms, 2017 25th International Conference on Nuclear Engineering, Shanghai, China, 9, pp. V009T15A065. DOI: 10.1115/ICONE25-6793610.1115/ICONE25-67936
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|