Solution of Linear and Non-Linear Boundary Value Problems Using Population-Distributed Parallel Differential Evolution

Author:

Nasim Amnah1,Burattini Laura1,Fateh Muhammad Faisal2,Zameer Aneela2

Affiliation:

1. Department of Information Engineering (DII) , Università Politecnica delle Marche , Via Brecce Bianche, 60131 Ancona , Italy

2. Department of Computer and Information Sciences (DCIS), Pakistan Institute of Engineering and Applied Sciences , Nilore, 44000 Islamabad , Pakistan

Abstract

Abstract Cases where the derivative of a boundary value problem does not exist or is constantly changing, traditional derivative can easily get stuck in the local optima or does not factually represent a constantly changing solution. Hence the need for evolutionary algorithms becomes evident. However, evolutionary algorithms are compute-intensive since they scan the entire solution space for an optimal solution. Larger populations and smaller step sizes allow for improved quality solution but results in an increase in the complexity of the optimization process. In this research a population-distributed implementation for differential evolution algorithm is presented for solving systems of 2 nd -order, 2-point boundary value problems (BVPs). In this technique, the system is formulated as an optimization problem by the direct minimization of the overall individual residual error subject to the given constraint boundary conditions and is then solved using differential evolution in the sense that each of the derivatives is replaced by an appropriate difference quotient approximation. Four benchmark BVPs are solved using the proposed parallel framework for differential evolution to observe the speedup in the execution time. Meanwhile, the statistical analysis is provided to discover the effect of parametric changes such as an increase in population individuals and nodes representing features on the quality and behavior of the solutions found by differential evolution. The numerical results demonstrate that the algorithm is quite accurate and efficient for solving 2 nd -order, 2-point BVPs.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3