Fine Tuning of Agent-Based Evolutionary Computing

Author:

Mizera Michal1,Nowotarski Pawel1,Byrski Aleksander1,Kisiel-Dorohinicki Marek1

Affiliation:

1. Department of Computer Science, Faculty of Computer Science, Electronics and Telecommunications , AGH University of Science and Technology , Al. Mickiewicza 30, 30-059 Krakow , Poland

Abstract

Abstract Evolutionary Multi-agent System introduced by late Krzysztof Cetnarowicz and developed further at the AGH University of Science and Technology became a reliable optimization system, both proven experimentally and theoretically. This paper follows a work of Byrski further testing and analyzing the efficacy of this metaheuristic based on popular, high-dimensional benchmark functions. The contents of this paper will be useful for anybody willing to apply this computing algorithm to continuous and not only optimization.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

Reference33 articles.

1. [1] P. Adamidis. Parallel evolutionary algorithms: A review. In Proceedings of the 4th Hellenic-European Conference on Computer Mathematics and its Applications (HERCMA 1998), Athens, Greece, 1998.

2. [2] T. Bäck and H.-P. Schwefel. Evolutionary computation: An overview. In T. Fukuda and T. Furuhashi, editors, Proceedings of the Third IEEE Conference on Evolutionary Computation. IEEE Press, 1996.

3. [3] A. Byrski, M. Kisiel-Dorohinicki, and E. Nawarecki. Agent-based evolution of neural network architecture. In M. Hamza, editor, Proc. of the IASTED Int. Symp.: Applied Informatics. IASTED/ACTA Press, 2002.

4. [4] A. Byrski, M. Kisiel-Dorohinicki, and N. Tusinski. Extending estimation of distribution algorithms with agent-based computing inspirations. Transactions on Computational Collective Intelligence, XXVII, 2017.

5. [5] A. Byrski, R. Schaefer, M. Smołka, and C. Cotta. Asymptotic guarantee of success for multi-agent memetic systems. Bulletin of the Polish Academy of Sciences – Technical Sciences, 61(1), 2013.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-population-Based Algorithm with Different Ways of Subpopulations Cooperation;Artificial Intelligence and Soft Computing;2023

2. A New Hybrid Particle Swarm Optimization and Evolutionary Algorithm with Self-Adaptation Mechanism;Artificial Intelligence and Soft Computing;2023

3. Towards a Quantum Modeling Approach to Reactive Agents;2021 IEEE International Conference on Quantum Computing and Engineering (QCE);2021-10

4. Population Management Approaches in the OPn Algorithm;Artificial Intelligence and Soft Computing;2021

5. Multipopulation Nature-Inspired Algorithm (MNIA) for the Designing of Interpretable Fuzzy Systems;IEEE Transactions on Fuzzy Systems;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3