Automatic Analysis and Anomaly Detection System of Transverse Electron Beam Profile Based on Advanced and Interpretable Deep Learning Architectures

Author:

Piekarski Michał12ORCID,Jaworek-Korjakowska Joanna3ORCID,Wawrzyniak Adriana2ORCID

Affiliation:

1. AGH University in Krakow , Department of Automatic Control and Robotics , Al. Adama Mickiewicza 30 , , Krakow , Poland

2. National Synchrotron Radiation Center SOLARIS, Jagiellonian University Czerwone Maki 98 , , Krakow , Poland

3. AGH University in Krakow, Department of Automatic Control and Robotics , Center of Excellence in Artificial Intelligence Al . Adama Mickiewicza 30 , , Krakow , Poland

Abstract

Abstract The National Synchrotron Radiation Center SOLARIS, ranked among the top infrastructures of that type worldwide, is the only one located in Central-Eastern Europe, in Poland. The SOLARIS Center, with six fully operational beamlines, serves as a hub for research across a diverse range of disciplines. This cutting-edge facility fosters innovation in fields like biology, chemistry, and physics as well as material engineering, nanotechnology, medicine, and pharmacology. With its advanced infrastructure and multidisciplinary approach, the SOLARIS Center enables discoveries and pushes the boundaries of knowledge. The most important aspect of such enormous research as well as industry infrastructure is to provide stable working conditions for the users and the conducted projects. Due to its unique properties, problem complexities, and challenges that require advanced approaches, the problem of anomaly detection and automatic analysis of signals for the beam stability assessment is still a huge challenge that has not been fully developed. To increase the effectiveness of centers with advanced research infrastructure we focus on the automatic analysis of transverse beam profiles generated by the Pinhole diagnostic beam-line. Pinhole beamlines are typically installed in the middle and high-energy synchrotrons to thoroughly analyze emitted X-rays and therefore assess electron beam quality. To address the problem we take advantage of AI solutions including up-to-date pre-trained convolutional neural network (CNN) models among others EfficientNetB0-B4-B6, InceptionV3 and DenseNet121. In this research, we propose the benchmark for Pinhole image classification including data preprocessing, model implementation, training process, hyperparameter selection as well as testing phase. Created from scratch database contains over one million transverse beam profile images. The proposed solution, based on the InceptionV3 architecture, classifies pinhole beamline images with 94.1% accuracy and 96.6% precision which is a state-of-the-art result in this research area. Finally, we employed interpretability algorithms to perform an analysis of the models and achieved results.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3