Position-Encoding Convolutional Network to Solving Connected Text Captcha

Author:

Qing Ke1,Zhang Rong1

Affiliation:

1. Department of Electronic Engineering and Information Science , University of Science and Technology of China , No. 443 Huangshan Rd, Hefei, Anhui Province, 230027 P. R. China

Abstract

Abstract Text-based CAPTCHA is a convenient and effective safety mechanism that has been widely deployed across websites. The efficient end-to-end models of scene text recognition consisting of CNN and attention-based RNN show limited performance in solving text-based CAPTCHAs. In contrast with the street view image and document, the character sequence in CAPTCHA is non-semantic. The RNN loses its ability to learn the semantic context and only implicitly encodes the relative position of extracted features. Meanwhile, the security features, which prevent characters from segmentation and recognition, extensively increase the complexity of CAPTCHAs. The performance of this model is sensitive to different CAPTCHA schemes. In this paper, we analyze the properties of the text-based CAPTCHA and accordingly consider solving it as a highly position-relative character sequence recognition task. We propose a network named PosConv to leverage the position information in the character sequence without RNN. PosConv uses a novel padding strategy and modified convolution, explicitly encoding the relative position into the local features of characters. This mechanism of PosConv makes the extracted features from CAPTCHAs more informative and robust. We validate PosConv on six text-based CAPTCHA schemes, and it achieves state-of-the-art or competitive recognition accuracy with significantly fewer parameters and faster convergence speed.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive CAPTCHA: A CRNN-Based Text CAPTCHA Solver with Adaptive Fusion Filter Networks;Applied Sciences;2024-06-08

2. An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks;Journal of Artificial Intelligence and Soft Computing Research;2023-06-01

3. Hand Gesture Recognition for Medical Purposes Using CNN;Artificial Intelligence and Soft Computing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3