Affiliation:
1. School of Electrical Engineering and Computer Science , Washington State University , Pullman , WA 99164 USA
Abstract
Abstract
Deep learning has been successful in various domains including image recognition, speech recognition and natural language processing. However, the research on its application in graph mining is still in an early stage. Here we present Model R, a neural network model created to provide a deep learning approach to the link weight prediction problem. This model uses a node embedding technique that extracts node embeddings (knowledge of nodes) from the known links’ weights (relations between nodes) and uses this knowledge to predict the unknown links’ weights. We demonstrate the power of Model R through experiments and compare it with the stochastic block model and its derivatives. Model R shows that deep learning can be successfully applied to link weight prediction and it outperforms stochastic block model and its derivatives by up to 73% in terms of prediction accuracy. We analyze the node embeddings to confirm that closeness in embedding space correlates with stronger relationships as measured by the link weight. We anticipate this new approach will provide effective solutions to more graph mining tasks.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems
Reference41 articles.
1. [1] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al, Deep speech: Scaling up end-to-end speech recognition, arXiv preprint arXiv:1412.5567, 2014.
2. [2] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014.
3. [3] K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu, Recurrent neural networks for language understanding. in INTERSPEECH, 2013, pp. 2524–2528.10.21437/Interspeech.2013-569
4. [4] O. Barkan and N. Koenigstein, Item2vec: neural item embedding for collaborative filtering, in Machine Learning for Signal Processing (MLSP), 2016 IEEE 26th International Workshop on. IEEE, 2016, pp. 1–6.10.1109/MLSP.2016.7738886
5. [5] A. Grover and J. Leskovec, node2vec: Scalable feature learning for networks, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016, pp. 855–864.10.1145/2939672.2939754
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献