Accelerating User Profiling in E-Commerce Using Conditional GAN Networks for Synthetic Data Generation

Author:

Gabryel Marcin12ORCID,Kocić Eliza2ORCID,Kocić Milan2ORCID,Patora-Wysocka Zofia3ORCID,Xiao Min4ORCID,Pawlak Mirosław5ORCID

Affiliation:

1. Department of Intelligent Computer Systems , Częstochowa University of Technology , Częstochowa , Poland

2. Spark Digitup , Plac Wolnica 13 lok. 10 , Kraków , Poland

3. Management Department , University of Social Sciences , Łódź , Poland

4. College of Automation & College of Artificial Intelligence , Nanjing University of Posts and Telecommunications , Nanjing , China

5. Information Technology Institute , University of Social Sciences , Łódź , Poland

Abstract

Abstract This paper presents the findings of a study on the profiling of online store users in terms of their likelihood of making a purchase. It also considers the possibility of implementing this solution in the short term. The paper describes the process of developing a profiling model based on data derived from monitoring user behaviour on a website. During the customer’s subsequent visits, information is collected to identify the user, record their behaviour on the page and the fact that they made a purchase. The model requires a substantial amount of training data, primarily related to the purchase of products. This represents a small percentage of total website traffic and requires a considerable amount of time to monitor user behaviour. Therefore, we investigated the possibility of using the Conditional Generative Adversarial Network (CGAN) to generate synthetic data for training the profiling model. The application of GAN would facilitate a more expedient implementation of this model on an online store website. The findings of this study may also prove beneficial to webshop owners and managers, enabling them to gain a deeper insight into their customers and align their price offers or discounts with the profile of a particular user.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3