Metrics for Assessing Generalization of Deep Reinforcement Learning in Parameterized Environments

Author:

Aleksandrowicz Maciej1ORCID,Jaworek-Korjakowska Joanna1ORCID

Affiliation:

1. 1 Department of Automatic Control and Robotics , AGH University of Krakow , al. A. Mickiewicza 30, Building B-1 , Kraków

Abstract

Abstract In this work, a study focusing on proposing generalization metrics for Deep Reinforcement Learning (DRL) algorithms was performed. The experiments were conducted in DeepMind Control (DMC) benchmark suite with parameterized environments. The performance of three DRL algorithms in selected ten tasks from the DMC suite has been analysed with existing generalization gap formalism and the proposed ratio and decibel metrics. The results were presented with the proposed methods: average transfer metric and plot for environment normal distribution. These efforts allowed to highlight major changes in the model’s performance and add more insights about making decisions regarding models’ requirements.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

Reference33 articles.

1. Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rockt¨aschel. A Survey of Zero-shot Generalisation in Deep Reinforcement Learning. Journal of Artificial Intelligence Research, 76: 201–264, January 2023. ISSN 1076-9757. doi:10.1613/jair.1.14174.

2. Katsuhiko Ogata. Modern Control Engineering. Prentice Hall, 2010. ISBN 978-0-13-615673-4.

3. Richard S. Sutton and Andrew G. Barto. Sutton & Barto Book: Reinforcement Learning: An Introduction. 2018. ISBN 978-0-262-03924-6.

4. Dimitri P. Bertsekas. Reinforcement Learning and Optimal Control. 2019. ISBN 978-1-886529-39-7.

5. Hiroki Furuta and et al. Policy Information Capacity: Information-Theoretic Measure for Task Complexity in Deep Reinforcement Learning. In Proceedings of the 38th International Conference on Machine Learning, pages 3541–3552. PMLR, July 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3