Bending Path Understanding Based on Angle Projections in Field Environments

Author:

Wang Luping1ORCID,Wei Hui2ORCID

Affiliation:

1. 1 Laboratory of 3D Scene Understanding and Visual Navigation, School of Mechanical Engineering , University of Shanghai for Science and Technology , Shanghai , , China

2. 2 Laboratory of Algorithms for Cognitive Models, School of Computer Science , Fudan University , Shanghai , , China

Abstract

Abstract Scene understanding is a core problem for field robots. However, many unsolved problems, like understanding bending paths, severely hinder the implementation due to varying illumination, irregular features and unstructured boundaries in field environments. Traditional three-dimensional(3D) environmental perception from 3D point clouds or fused sensors are costly and account poorly for field unstructured semantic information. In this paper, we propose a new methodology to understand field bending paths and build their 3D reconstruction from a monocular camera without prior training. Bending angle projections are assigned to clusters. Through compositions of their sub-clusters, bending surfaces are estimated by geometric inferences. Bending path scenes are approximated bending structures in the 3D reconstruction. Understanding sloping gradient is helpful for a navigating mobile robot to automatically adjust their speed. Based on geometric constraints from a monocular camera, the approach requires no prior training, and is robust to varying color and illumination. The percentage of incorrectly classified pixels were compared to the ground truth. Experimental results demonstrated that the method can successfully understand bending path scenes, meeting the requirements of robot navigation in an unstructured environment.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3