A Shuffled Frog Leaping Algorithm with Q-Learning for Distributed Hybrid Flow Shop Scheduling Problem with Energy-Saving

Author:

Cai Jingcao12ORCID,Wang Lei1ORCID

Affiliation:

1. School of Mechanical Engineering, Anhui Polytechnic University , , China

2. AnHui Key Laboratory of Detection Technology and Energy Saving Devices , AnHui Polytechnic University , , China

Abstract

Abstract Energy saving has always been a concern in production scheduling, especially in distributed hybrid flow shop scheduling problems. This study proposes a shuffled frog leaping algorithm with Q-learning (QSFLA) to solve distributed hybrid flow shop scheduling problems with energy-saving(DEHFSP) for minimizing the maximum completion time and total energy consumption simultaneously. The mathematical model is provided, and the lower bounds of two optimization objectives are given and proved. A Q-learning process is embedded in the memeplex search of QSFLA. The state of the population is calculated based on the lower bound. Sixteen search strategy combinations are designed according to the four kinds of global search and four kinds of neighborhood structure. One combination is selected to be used in the memeplex search according to the population state. An energy-saving operator is presented to reduce total energy consumption without increasing the processing time. One hundred forty instances with different scales are tested, and the computational results show that QSFLA is a very competitive algorithm for solving DEHFSP.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3