Emerging Modularity During the Evolution of Neural Networks

Author:

Praczyk Tomasz1ORCID

Affiliation:

1. 1 Computer Department , Polish Naval Academy , ul. Smidowicza 69, 81-127 Gdynia , Poland

Abstract

Abstract Modularity is a feature of most small, medium and large–scale living organisms that has evolved over many years of evolution. A lot of artificial systems are also modular, however, in this case, the modularity is the most frequently a consequence of a handmade design process. Modular systems that emerge automatically, as a result of a learning process, are very rare. What is more, we do not know mechanisms which result in modularity. The main goal of the paper is to continue the work of other researchers on the origins of modularity, which is a form of optimal organization of matter, and the mechanisms that led to the spontaneous formation of modular living forms in the process of evolution in response to limited resources and environmental variability. The paper focuses on artificial neural networks and proposes a number of mechanisms operating at the genetic level, both those borrowed from the natural world and those designed by hand, the use of which may lead to network modularity and hopefully to an increase in their effectiveness. In addition, the influence of external factors on the shape of the networks, such as the variability of tasks and the conditions in which these tasks are performed, is also analyzed. The analysis is performed using the Hill Climb Assembler Encoding constructive neuro-evolutionary algorithm. The algorithm was extended with various module-oriented mechanisms and tested under various conditions. The aim of the tests was to investigate how individual mechanisms involved in the evolutionary process and factors external to this process affect modularity and efficiency of neural networks.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3