Feature Map Augmentation to Improve Scale Invariance in Convolutional Neural Networks
Author:
Affiliation:
1. School of Technology, Engineering, Mathematics and Physics , University of the South Pacific , Laucala Bay Road , Suva , Fiji
2. Faculty of Science and Technology , University of Canberra , Canberra , ACT, 2617 , Australia
Abstract
Publisher
Walter de Gruyter GmbH
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems
Link
https://www.sciendo.com/pdf/10.2478/jaiscr-2023-0004
Reference41 articles.
1. [1] J. Dicarlo, D. Zoccolan, and N. C Rust, How does the brain solve visual object recognition? Neuron, vol. 73, pp. 415–34, 02 2012.10.1016/j.neuron.2012.01.010330644422325196
2. [2] D. Kumar, D. Sharma, and R. Goecke, Feature map augmentation to improve rotation invariance in convolutional neural networks, in Advanced Concepts for Intelligent Vision Systems, J. Blanc-Talon, P. Delmas, W. Philips, D. Popescu, and P. Scheunders, Eds. Cham: Springer International Publishing, 2020, pp. 348–359.10.1007/978-3-030-40605-9_30
3. [3] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.
4. [4] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014.
5. [5] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.10.1109/CVPR.2016.90
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evaluating Neural Network Models For Predicting Dynamic Signature Signals;Journal of Artificial Intelligence and Soft Computing Research;2024-07-01
2. A New Method of Verification of Dynamic Signatures Changing over Time with Decomposition and Selection of Characteristic Descriptors;Artificial Intelligence and Soft Computing;2023
3. Multi-population-based Algorithms with Different Migration Topologies and Their Improvement by Population Re-initialization;Artificial Intelligence and Soft Computing;2023
4. Multi-population Algorithm Using Surrogate Models and Different Training Plans;Artificial Intelligence and Soft Computing;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3