Affiliation:
1. 1Division of Geodesy and Geoinformatics, Royal Institute of Technology (KTH), SE 10044, Stockholm, Sweden
Abstract
AbstractWe derive computational formulas for determining the Clairaut constant, i.e. the cosine of the maximum latitude of the geodesic arc, from two given points on the oblate ellipsoid of revolution. In all cases the Clairaut constant is unique. The inverse geodetic problem on the ellipsoid is to determine the geodesic arc between and the azimuths of the arc at the given points. We present the solution for the fixed Clairaut constant. If the given points are not(nearly) antipodal, each azimuth and location of the geodesic is unique, while for the fixed points in the ”antipodal region”, roughly within 36”.2 from the antipode, there are two geodesics mirrored in the equator and with complementary azimuths at each point. In the special case with the given points located at the poles of the ellipsoid, all meridians are geodesics. The special role played by the Clairaut constant and the numerical integration make this method different from others available in the literature.
Subject
Applied Mathematics,Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geophysics,Astronomy and Astrophysics
Reference11 articles.
1. Über die Berechnung der geographischen Längen und Breiten aus geodätischen Vermessungen;F. Bessel;Astron. Nachr,1826
2. Eine direkte Lösung der zweiten Hauptaufgabe auf dem Rotationsellipsoid fuer beliebige Entfernungen;H. Moritz;ZfV,1959
3. Geodetic Reference System 1980;H. Moritz;J Geod,2000
4. Long geodesics on the ellipsoid;H. Rainsford;Bull. Geod,1955
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献