Spinal muscular atrophy: Where are we now? Current challenges and high hopes

Author:

Przymuszała Marta1ORCID,Gwit Maria1ORCID,Waśko Jadwiga12ORCID,Morańska Katarzyna13ORCID,Kajdasz Arkadiusz45ORCID

Affiliation:

1. Section of Regenerative Medicine and Cancer Research, Natural Sciences Society , Adam Mickiewicz University Poznań , Poznań , Poland

2. Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology , Adam Mickiewicz University Poznań , Poznań , Poland

3. Alina Pienkowska Cancer Prevention and Epidemiology Center Inc. , Poznań , Poland

4. Laboratory of Human Molecular Genetics, Faculty of Biology , Institute of Molecular Biology and Biotechnology , Adam Mickiewicz University Poznań , Poznań , Poland

5. Department of RNA Metabolism , Institute of Bioorganic Chemistry, Polish Academy of Sciences , Poznań , Poland

Abstract

Abstract Spinal muscular atrophy (SMA) is a neuromuscular disorder characterized by muscle weakness. It causes movement issues and severe physical disability. SMA is classified into four types based on the level of function achieved, age of onset, and maximum function achieved. The deletion or point mutation in the Survival of Motor Neuron 1 (SMN1) gene causes SMA. As a result, no full-length protein is produced. A nearly identical paralog, SMN2, provides enough stable protein to prevent death but not enough to compensate for SMN1's loss. The difference between SMN1 and SMN2 is due to different exon 7 alternative splicing patterns. SMA molecular therapies currently focus on restoring functional SMN protein by splicing modification of SMN2 exon 7 or elevated SMN protein levels. Nusinersen, an antisense oligonucleotide targeting the ISS-N1 sequence in SMN2 intron 7, was the first drug approved by the Food and Drug Administration. Risdiplam, a novel therapeutic that acts as an SMN2 exon 7 splicing modifier, was recently approved. All of these drugs result in the inclusion of SMN2 exon 7, and thus the production of functional SMN protein. Onasemnogene abeparvovec is a gene therapy that uses a recombinant adeno-associated virus that encodes the SMN protein. There are also experimental therapies available, such as reldesemtiv and apitegromab (SRK-015), which focus on improving muscle function or increasing muscle tissue growth, respectively. Although approved therapies have been shown to be effective, not all SMA patients can benefit from them due to age or weight, but primarily due to their high cost. This demonstrates the significance of continuous treatment improvement in today's medical challenges.

Publisher

Walter de Gruyter GmbH

Subject

Infectious Diseases,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3