Two strategies used to solve a navigation task: A different use of the hippocampus by males and females? A preliminary study in rats
Author:
Lugo Ferran1, Torres Marta N.1, Chamizo V.D.12
Affiliation:
1. Departament de Cognició, Desenvolupament i Psicologia de la Educació , Universitat de Barcelona , Barcelona , Spain 2. The Institute of Neurosciences of the Universitat of Barcelona , Barcelona , Spain
Abstract
Abstract
There is abundant research (both in rodents and in humans) showing that males and females often use different types of information in spatial navigation. Males prefer geometry as a source of information, whereas females tend to focus on landmarks (which are often near to a goal objects). However, when considering the role of the hippocampus, the research focuses primarily on males only. In the present study, based on Rodríguez, Torres, Mackintosh, and Chamizo’s (2010, Experiment 2) navigation protocol, we conducted two experiments, one with males and another with females, in order to tentatively evaluate the role of the dorsal hippocampus in the acquisition of two tasks: one based on landmark learning and the alternate one on local pool-geometry learning. Both when landmark learning and when geometry learning, Sham male rats learned significantly faster than Lesion male animals. This was not the case with female rats in geometry learning. These results suggest that the dorsal hippocampus could play an important role in males only.
Publisher
Walter de Gruyter GmbH
Subject
Psychology (miscellaneous),Arts and Humanities (miscellaneous),Developmental and Educational Psychology,Experimental and Cognitive Psychology,Statistics and Probability
Reference53 articles.
1. Bannerman, D. M., Sprengel, R., Sanderson, D. J., McHugh, S. B., Rawlins, J. N., Monyer, H., & Seeburg, P. H. (2014). Hippocampal synaptic plasticity, spatial memory and anxiety. Nature Reviews Neuroscience, 15(3), 181–192.10.1038/nrn3677 2. Bird, C. M., Capponi, C., King, J. A., Doeller, C. F., & Burgess, N. (2010). Establishing the boundaries: the hippocampal contribution to imagining scenes. Journal of Neuroscience, 30(35), 11688–11695.10.1523/JNEUROSCI.0723-10.2010 3. Bohbot, V. D., Del Balso, D., Conrad, K., Konishi, K., & Leyton, M. (2013). Caudate nucleus-dependent navigational strategies are associated with increased use of addictive rats. Hippocampus, 23, 973–984.10.1002/hipo.22187 4. Chamizo, V. D. & Rodríguez, C. A. (2012). Qualitative sex differences in spatial learning. In S. P. McGeown (Ed.), Psychology of gender differences, (pp. 267–281). Hauppauge, NY: Nova Science Publishers, Inc. 5. Chamizo, V. D., Rodríguez, C. A., Sánchez, J., & Mármol, F. (2016). Sex Differences after Environmental Enrichment and Physical Exercise in Rats when Solving a Navigation Task. Learning and Behavior, 44(3), 227–238.2651113210.3758/s13420-015-0200-3
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|